当前位置: 首页 > news >正文

机器学习之贝叶斯分类器和混淆矩阵可视化

贝叶斯分类器

目录

  • 贝叶斯分类器
    • 1 贝叶斯分类器
      • 1.1 概念
      • 1.2算法理解
      • 1.3 算法导入
      • 1.4 函数
    • 2 混淆矩阵可视化
      • 2.1 概念
      • 2.2 理解
      • 2.3 函数导入
      • 2.4 函数及参数
      • 2.5 绘制函数
    • 3 实际预测
      • 3.1 数据及理解
      • 3.2 代码测试

1 贝叶斯分类器

1.1 概念

贝叶斯分类器是基于贝叶斯定理构建的分类方法,它通过计算后验概率来对数据进行分类。

1.2算法理解

在这里插入图片描述

  • P(A|B) 是在事件B发生的条件下事件A发生的概率,称为A的后验概率。
  • P(B|A) 是在事件A发生的条件下事件B发生的概率。
  • P(A)是事件A发生的概率,称为A的先验概率。
  • P(B)是事件B发生的概率。

在这里插入图片描述

现在,我们使用朴素贝叶斯牙类器莱计算给定特征值下每个类别的后验率:
P(D=0|A=1,B=1,C=0)=P(D=0)P(A=1ID=0)P(B=1|D=0)P(C=0|D=0)=0.50.6670.3330.667=0.08335583549429845
P(D=1|A=1,B=1,C=0)=P(D=1)P(A=1|D=1)P(B=1|D=1)P(C=0ID=1)0.50.3330.6670.333=0.037499999999999996

1.3 算法导入

from sklearn.naive_bayes import MultinomialNB

1.4 函数

  • MultinomialNB()
  • fit(x_tr,y_tr)
  • predict(x_tr)

2 混淆矩阵可视化


2.1 概念

混淆矩阵(Confusion Matrix),也称为错误矩阵,是一种特别适用于监督学习的评估分类模型性能的工具,尤其是在分类问题中。混淆矩阵展示了实际类别与模型预测类别之间的关系。

2.2 理解

在这里插入图片描述

  • TP(True Positive):正确预测到的正类样本数。
  • FN(False Negative):实际为正类但预测为负类的样本数。
  • FP(False Positive):实际为负类但预测为正类的样本数。
  • TN(True Negative):正确预测到的负类样本数。

基于混淆矩阵,可以计算出以下几种性能指标:

  • 准确率(Accuracy):(TP + TN)/(TP + TN + FP + FN)
  • 精确率(Precision):TP/(TP + FP)
  • 召回率(Recall)或真正例率(True Positive Rate, TPR):TP/(TP + FN)
  • F1分数(F1 Score): 2 *(Precision * Recall)/(Precision + Recall)
  • 假正例率(False Positive Rate, FPR):FP/(FP + TN)

2.3 函数导入

from sklearn.metrics import confusion_matrix

2.4 函数及参数

metrics.classification_report(y_te,te_pr,digits=6)

  • y_te,已知道结果类别
  • te_pr,训练模型预测的结果类别
  • digits=6,结果保留的小数点

2.5 绘制函数

代码展示:

def cm_plot(y,y_pr):cm = confusion_matrix(y,y_pr)plt.matshow(cm,cmap=plt.cm.Blues)plt.colorbar()for x in range(len(cm)):for y in range(len(cm)):plt.annotate(cm[x,y],xy=(y,x),horizontalalignment='center',verticalalignment='center')plt.ylabel('TRUE label')plt.xlabel('PREDICTED label')return plt

3 实际预测


3.1 数据及理解

第一列为次序,需要删除,最后一列为结果类别,其他为特征数据。
在这里插入图片描述

3.2 代码测试

代码展示:

import pandas as pd
from sklearn.naive_bayes import MultinomialNB
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn import metricsdef cm_plot(y,y_pr):cm = confusion_matrix(y,y_pr)plt.matshow(cm,cmap=plt.cm.Blues)plt.colorbar()for x in range(len(cm)):for y in range(len(cm)):plt.annotate(cm[x,y],xy=(y,x),horizontalalignment='center',verticalalignment='center')plt.ylabel('TRUE label')plt.xlabel('PREDICTED label')return pltdata = pd.read_csv('iris.csv')
data = data.drop(['1'],axis=1)
x = data.drop(['0'],axis=1)
y = data['0']x_tr,x_te,y_tr,y_te = \train_test_split(x, y, test_size=0.2,random_state=0)by = MultinomialNB()
by.fit(x_tr,y_tr)
tr_pr = by.predict(x_tr)
cm_plot(tr_pr,y_tr).show()
te_pr = by.predict(x_te)
cm_plot(te_pr,y_te).show()
print(metrics.classification_report(y_te,te_pr,digits=6))

运行结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

相关文章:

机器学习之贝叶斯分类器和混淆矩阵可视化

贝叶斯分类器 目录 贝叶斯分类器1 贝叶斯分类器1.1 概念1.2算法理解1.3 算法导入1.4 函数 2 混淆矩阵可视化2.1 概念2.2 理解2.3 函数导入2.4 函数及参数2.5 绘制函数 3 实际预测3.1 数据及理解3.2 代码测试 1 贝叶斯分类器 1.1 概念 贝叶斯分类器是基于贝叶斯定理构建的分类…...

关于大数据的基础知识(一)——定义特征结构要素

成长路上不孤单😊😊😊😊😊😊 【14后😊///计算机爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于大数据的基础知识(一&a…...

2025 GitCode 开发者冬日嘉年华:AI 与开源的深度交融之旅

在科技的浪潮中,AI 技术与开源探索的火花不断碰撞,催生出无限可能。2025 年 1 月 4 日,由 GitCode 联合 CSDN COC 城市开发者社区精心打造的开年首场开发者活动:冬日嘉年华在北京中关村 • 鼎好 DH3-A 座 22 层盛大举行&#xff0…...

【MyBatis-Plus 进阶功能】开发中常用场景剖析

MyBatis-Plus(MP)除了封装常见的 CRUD 操作,还提供了一些高级功能,进一步简化复杂场景下的开发工作。本文将逐一讲解 逻辑删除、自动填充、多表关联查询的原理与使用方式,让你快速掌握这些技巧! 一、逻辑删…...

【C++/控制台】2048小游戏

源代码&#xff1a; #include <iostream> #include <windows.h> #include <stdio.h> #include <math.h> #include <stdlib.h> #include <conio.h> #include <time.h>// #define KEY_DOWN(VK_NONAME) ((GetAsyncKeyState(VK_NONAME)…...

Linux 中 top 命令的使用与实例解读

目录 Linux 中 top 命令的使用与实例解读一、top 命令参数二、输出字段含义&#xff08;一&#xff09;系统信息&#xff08;二&#xff09;任务信息&#xff08;三&#xff09;CPU 信息&#xff08;四&#xff09;内存信息 三、实例解读系统信息任务信息CPU信息内存信息进程列…...

C++ STL 中的 `unordered_map` 和 `unordered_set` 总结

1. unordered_map unordered_map 是一个基于哈希表实现的容器&#xff0c;存储键值对&#xff08;key-value&#xff09;&#xff0c;每个键必须唯一&#xff0c;可以快速插入、删除、查找。 基本特性 存储结构&#xff1a;键值对 (key-value)。键唯一性&#xff1a;每个键在…...

机器学习基础-概率图模型

&#xff08;一阶&#xff09;马尔科夫模型的基本概念 状态、状态转换概率、初始概率 状态转移矩阵的基本概念 隐马尔可夫模型&#xff08;HMM&#xff09;的基本概念 条件随机场&#xff08;CRF&#xff09;的基本概念 实际应用中的马尔科夫性 自然语言处理&#xff1a; 在词性…...

【MySQL】九、表的内外连接

文章目录 前言Ⅰ. 内连接案例&#xff1a;显示SMITH的名字和部门名称 Ⅱ. 外连接1、左外连接案例&#xff1a;查询所有学生的成绩&#xff0c;如果这个学生没有成绩&#xff0c;也要将学生的个人信息显示出来 2、右外连接案例&#xff1a;对stu表和exam表联合查询&#xff0c;把…...

芯片详细讲解,从而区分CPU、MPU、DSP、GPU、FPGA、MCU、SOC、ECU

目录 芯片的概念结构 芯片的派系划分 通用芯片&#xff08;CPU&#xff0c;MPU&#xff0c;GPU&#xff0c;DSP&#xff09; 定制芯片&#xff08;FPGA&#xff0c;ASIC&#xff09; 芯片之上的集成&#xff08;MCU&#xff0c;SOC&#xff0c;ECU&#xff09; 软硬件的匹…...

halcon三维点云数据处理(十)locate_cylinder_3d

目录 一、locate_cylinder_3d例程代码二、gen_binocular_rectification_map函数三、binocular_disparity函数四、自定义函数select_best_candidates五、自定义函数remove_shadowed_regions 一、locate_cylinder_3d例程代码 1、读取或者创建3D形状模型&#xff0c; 2、根据双目…...

vue(2,3), react (16及以上)开发者工具资源

在前端开发的广阔领域中&#xff0c;Vue.js 和 React.js 作为两大主流框架&#xff0c;各自拥有庞大的用户群体和丰富的生态系统。为了帮助开发者更高效地进行调试和开发&#xff0c;Vue Devtools 和 React 开发者工具应运而生&#xff0c;成为这两个框架不可或缺的辅助工具。本…...

2025年华为OD上机考试真题(Java)——整数对最小和

题目&#xff1a; 给定两个整数数组array1、array2&#xff0c;数组元素按升序排列。假设从array1、array2中分别取出一个元素可构成一对元素&#xff0c;现在需要取出k对元素&#xff0c;并对取出的所有元素求和&#xff0c;计算和的最小值。 注意&#xff1a;两对元素如果对应…...

进程间通信——网络通信——UDP

进程间通信&#xff08;分类&#xff09;&#xff1a;网络通信、无名管道、有名管道、信号、消息队列、共享内存、信号量集 OSI七层模型&#xff1a;&#xff08;理论模型&#xff09; 应用层 : 要传输的数据信息&#xff0c;如文件传输&#xff0c;电子邮件等 表示层 : 数…...

【我的 PWN 学习手札】IO_FILE 之 FSOP

FSOP&#xff1a;File Stream Oriented Programming 通过劫持 _IO_list_all 指向伪造的 _IO_FILE_plus&#xff0c;进而调用fake IO_FILE 结构体对象中被伪造的vtable指向的恶意函数。 目录 前言 一、glibc-exit函数浅析 二、FSOP 三、Largebin attack FSOP &#xff08;…...

新兴的开源 AI Agent 智能体全景技术栈

新兴的开源 AI Agent 智能体全景技术栈 LLMs&#xff1a;开源大模型嵌入模型&#xff1a;开源嵌入模型模型的访问和部署&#xff1a;Ollama数据存储和检索&#xff1a;PostgreSQL, pgvector 和 pgai后端&#xff1a;FastAPI前端&#xff1a;NextJS缺失的一环&#xff1a;评估和…...

统计学习方法(第二版) 概率分布学习

本文主要介绍机器学习的概率分布&#xff0c;帮助后续的理解。 定义直接从书上搬的想自己写&#xff0c;但没有定义准确&#xff0c;还浪费事件&#xff0c;作为个人笔记&#xff0c;遇到速查。 目录 一、二点分布&#xff08;0-1分布、伯努利分布&#xff09; 二、二项分布…...

淺談Cocos2djs逆向

前言 簡單聊一下cocos2djs手遊的逆向&#xff0c;有任何相關想法歡迎和我討論^^ 一些概念 列出一些個人認為比較有用的概念&#xff1a; Cocos遊戲的兩大開發工具分別是CocosCreator和CocosStudio&#xff0c;區別是前者是cocos2djs專用的開發工具&#xff0c;後者則是coco…...

【ROS2】RViz2加载URDF模型文件

1、RViz2加载URDF模型文件 1)运行RViz2 rviz22)添加组件:RobotModel 3)选择通过文件添加 4)选择URDF文件,此时会报错,需要修改Fixed Frame为map即可 5)因为没有坐标转换,依然会报错,下面尝试解决 2、运行坐标转换节点 1)运行ROS节点:robot_state_publishe...

Unity导入特效,混合模式无效问题

检查spine导出设置与Unity导入设置是否一致 检查Blend Mode Materials是否勾选 检查是否使用导入时产生的对应混合模式的材质&#xff0c;混合模式不适用默认材质 这里选导入时生成的材质...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;采用DevEco Studio实现&#xff0c;包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析

1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器&#xff08;TI&#xff09;推出的一款 汽车级同步降压转换器&#xff08;DC-DC开关稳压器&#xff09;&#xff0c;属于高性能电源管理芯片。核心特性包括&#xff1a; 输入电压范围&#xff1a;2.95V–6V&#xff0c;输…...

2.2.2 ASPICE的需求分析

ASPICE的需求分析是汽车软件开发过程中至关重要的一环&#xff0c;它涉及到对需求进行详细分析、验证和确认&#xff0c;以确保软件产品能够满足客户和用户的需求。在ASPICE中&#xff0c;需求分析的关键步骤包括&#xff1a; 需求细化&#xff1a;将从需求收集阶段获得的高层需…...

Linux入门(十五)安装java安装tomcat安装dotnet安装mysql

安装java yum install java-17-openjdk-devel查找安装地址 update-alternatives --config java设置环境变量 vi /etc/profile #在文档后面追加 JAVA_HOME"通过查找安装地址命令显示的路径" #注意一定要加$PATH不然路径就只剩下新加的路径了&#xff0c;系统很多命…...

7种分类数据编码技术详解:从原理到实战

在数据分析和机器学习领域&#xff0c;分类数据&#xff08;Categorical Data&#xff09;的处理是一个基础但至关重要的环节。分类数据指的是由有限数量的离散值组成的数据类型&#xff0c;如性别&#xff08;男/女&#xff09;、颜色&#xff08;红/绿/蓝&#xff09;或产品类…...

比较数据迁移后MySQL数据库和PostgreSQL数据仓库中的表

设计一个MySQL数据库和PostgreSQL数据库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较两…...