统计学习方法(第二版) 概率分布学习
本文主要介绍机器学习的概率分布,帮助后续的理解。
定义直接从书上搬的想自己写,但没有定义准确,还浪费事件,作为个人笔记,遇到速查。
目录
一、二点分布(0-1分布、伯努利分布)
二、二项分布(离散分布)
三、泊松分布(离散分布)
四、范畴分布(离散分布)
五、均匀分布(连续分布)
五、正态分布、高斯分布、标准正态分布(连续分布)
六、指数分布(连续分布)
七、拉普拉斯分布(Laplace)(连续分布)
总结
一、二点分布(0-1分布、伯努利分布)


二、二项分布(离散分布)


三、泊松分布(离散分布)



四、范畴分布(离散分布)

在这里举个例子吧!
比如说掷骰子结果有6中状态,也就是k = 6,可以知道6种情况的概率为1,所以当我们已知5种情况的概率,就能计算出剩一种情况的概率。这就是范畴分布。
五、均匀分布(连续分布)





五、正态分布、高斯分布、标准正态分布(连续分布)




六、指数分布(连续分布)


七、拉普拉斯分布(Laplace)(连续分布)
在概率论和统计学中,拉普拉斯是一种连续概率分布。由于它可以看做是俩个不同位置的指数分布背靠背拼在一起,所以它也叫做双指数分布。如果随机变量的概率密度函数分布为:
总结
简单介绍几个概率分布,这太多太难了,无语死!
相关文章:
统计学习方法(第二版) 概率分布学习
本文主要介绍机器学习的概率分布,帮助后续的理解。 定义直接从书上搬的想自己写,但没有定义准确,还浪费事件,作为个人笔记,遇到速查。 目录 一、二点分布(0-1分布、伯努利分布) 二、二项分布…...
淺談Cocos2djs逆向
前言 簡單聊一下cocos2djs手遊的逆向,有任何相關想法歡迎和我討論^^ 一些概念 列出一些個人認為比較有用的概念: Cocos遊戲的兩大開發工具分別是CocosCreator和CocosStudio,區別是前者是cocos2djs專用的開發工具,後者則是coco…...
【ROS2】RViz2加载URDF模型文件
1、RViz2加载URDF模型文件 1)运行RViz2 rviz22)添加组件:RobotModel 3)选择通过文件添加 4)选择URDF文件,此时会报错,需要修改Fixed Frame为map即可 5)因为没有坐标转换,依然会报错,下面尝试解决 2、运行坐标转换节点 1)运行ROS节点:robot_state_publishe...
Unity导入特效,混合模式无效问题
检查spine导出设置与Unity导入设置是否一致 检查Blend Mode Materials是否勾选 检查是否使用导入时产生的对应混合模式的材质,混合模式不适用默认材质 这里选导入时生成的材质...
el-table自定义按钮控制扩展expand
需求:自定义按钮实现表格扩展内容的展开和收起,实现如下: 将type“expand”的表格列的宽度设置为width"1",让该操作列不展示出来,然后通过ref动态调用组件的内部方法toggleRowExpansion(row, row.expanded)控…...
opencv CV_TM_SQDIFF未定义标识符
opencv CV_TM_SQDIFF未定义标识符 opencv4部分命名发生变换,将CV_WINDOW_AUTOSIZE改为WINDOW_AUTOSIZE;CV_TM_SQDIFF_NORMED改为TM_SQDIFF_NORMED。...
2024acl论文体悟
总结分析归纳 模型架构与训练方法:一些论文关注于改进大语言模型的架构和训练方法,以提高其性能和效率。例如,“Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models”提出了一种量化侧调优方法&a…...
【Git原理与使用】版本回退reset 详细介绍、撤销修改、删除文件
目录 一、版本回退 reset 1.1 指令: 1.2 参数说明: 1.3 演示: 二、撤销修改 情况一:对于工作区的代码,还没有 add 情况二:已经 add ,但没有 commit 情况三:已经 add &…...
反规范化带来的数据不一致问题的解决方案
在数据库设计中,规范化(Normalization)和反规范化(Denormalization)是两个相互对立但又不可或缺的概念。规范化旨在消除数据冗余,确保数据的一致性和准确性,但可能会降低查询效率。相反…...
【Android】直接使用binder的transact来代替aidl接口
aidl提供了binder调用的封装,有的时候,比如: 1. 懒得使用aidl生成的接口文件(确实是懒,Android studio中aidl生成接口文件很方便) 2. 服务端的提供者只公开了部分接口出来,只给了调用编号和参…...
Python机器学习笔记(十八、交互特征与多项式特征)
添加原始数据的交互特征(interaction feature)和多项式特征(polynomial feature)可以丰富特征表示,特别是对于线性模型。这种特征工程可以用统计建模和许多实际的机器学习应用中。 上一次学习:线性模型对w…...
《跟我学Spring Boot开发》系列文章索引❤(2025.01.09更新)
章节文章名备注第1节Spring Boot(1)基于Eclipse搭建Spring Boot开发环境环境搭建第2节Spring Boot(2)解决Maven下载依赖缓慢的问题给火车头提提速第3节Spring Boot(3)教你手工搭建Spring Boot项目纯手工玩法…...
【AI进化论】 如何让AI帮我们写一个项目系列:将Mysql生成md文档
一、python脚本 下面给出一个简易 Python 脚本示例,演示如何自动获取所有表的结构,并生成一份 Markdown 文件。你可根据自己的需求做修改或使用其他编程语言。 import mysql.connector# ------------------------ # 1. 连接数据库 # -----------------…...
(已开源-AAAI25) RCTrans:雷达相机融合3D目标检测模型
在雷达相机融合三维目标检测中,雷达点云稀疏、噪声较大,在相机雷达融合过程中提出了很多挑战。为了解决这个问题,我们引入了一种新的基于query的检测方法 Radar-Camera Transformer (RCTrans)。具体来说: 首先设计了一个雷达稠密…...
Elasticsearch:在 HNSW 中提前终止以实现更快的近似 KNN 搜索
作者:来自 Elastic Tommaso Teofili 了解如何使用智能提前终止策略让 HNSW 加快 KNN 搜索速度。 在高维空间中高效地找到最近邻的挑战是向量搜索中最重要的挑战之一,特别是当数据集规模增长时。正如我们之前的博客文章中所讨论的,当数据集规模…...
unittest VS pytest
以下是 unittest 和 pytest 框架的对比表格: 特性unittestpytest设计理念基于类的设计,类似于 Java 的 JUnit更简洁,基于函数式编程设计,支持类和函数两种方式测试编写需要继承 unittest.TestCase 类,方法以 test_ 开…...
Tableau数据可视化与仪表盘搭建-基础图表制作
目录 对比分析:比大小 柱状图 条形图 数据钻取 筛选器 热力图 气泡图 变化分析:看趋势 折线图 预测 面积图 关系分布:看位置 散点图 直方图 地图 构成分析:看占比 饼图 树地图 堆积图 对比分析:比大…...
Center Loss 和 ArcFace Loss 笔记
一、Center Loss 1. 定义 Center Loss 旨在最小化类内特征的离散程度,通过约束样本特征与其类别中心之间的距离,提高类内特征的聚合性。 2. 公式 对于样本 xi 和其类别yi,Center Loss 的公式为: xi: 当前样本的特征向量&…...
3125: 【入门】求1/1+1/2+2/3+3/5+5/8+8/13+13/21……的前n项的和
文章目录 题目描述输入输出样例输入样例输出 题目描述 求1/11/22/33/55/88/1313/2121/34……的前n项的和。 输入 第1行:一个整数n(1 < n < 30 )。 输出 一行:一个小数,即前n项之和(保留3位小数&…...
如何确保获取的淘宝详情页数据的准确性和时效性?
要确保获取的淘宝详情页数据的准确性和时效性,可从以下几个方面着手: 合法合规获取数据 遵守平台规则:在获取淘宝详情页数据之前,务必仔细阅读并严格遵守淘宝平台的使用协议和相关规定。明确哪些数据可以获取、以何种方式获取以及…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...

