2025年华为OD上机考试真题(Java)——整数对最小和


题目:
给定两个整数数组array1、array2,数组元素按升序排列。假设从array1、array2中分别取出一个元素可构成一对元素,现在需要取出k对元素,并对取出的所有元素求和,计算和的最小值。
注意:两对元素如果对应于array1、array2中的两个下标均相同,则视为同一对元素。
输入描述:
输入两行数组array1、array2,每行首个数字为数组大小size(0 < size <= 100);
0 < array1[i] <= 1000
0 < array2[i] <= 1000
接下来一行为正整数k
0 < k <= array1.size() * array2.size()
输出描述:
满足要求的最小和
示例1
输入:
3 1 1 2
3 1 2 3
2
输出:
4
Java源代码实现如下:
// 复制到上机考试时,去掉下面这行代码
package vip.buddha.demo;import java.util.ArrayList;
import java.util.Collections;
import java.util.Scanner;public class Main {public static void main(String[] args) {// 获取终端输入Scanner scanner = new Scanner(System.in);String[] array1 = scanner.nextLine().split(" ");String[] array2 = scanner.nextLine().split(" ");int k = scanner.nextInt();// array1 和 array2 各取出1元素给求和放到数组ArrayList<Integer> list = new ArrayList<>();for (int i = 0; i < array1.length; i++) {for (int j = 0; j < array2.length; j++) {list.add(Integer.parseInt(array1[i]) + Integer.parseInt(array2[j]));}}// 排序Collections.sort(list);// 获取k对求和int sum = 0;for (int i = 0; i < k; i++) {sum += list.get(i);}System.out.println(sum);}
}
说明:
给出的示例中,array1取出1元素,array2取出1元素,共需要取出2对元素
取array1数组第1个元素与array2数组第1个元素组成1对元素[1,1];
取array1数组第2个元素与array2数组第1个元素组成1对元素[1,1];
上面两种组合求和值最小:1+1=2,1+1=2,2+2=4。
解题思路:
数值最小2对(每对已经求和了),list数组从小到大排序,所以肯定是前两个元素求和是最小了。
机试,采用测试用例检验代码是否准确,所以输入输出对就可以了。

相关文章:
2025年华为OD上机考试真题(Java)——整数对最小和
题目: 给定两个整数数组array1、array2,数组元素按升序排列。假设从array1、array2中分别取出一个元素可构成一对元素,现在需要取出k对元素,并对取出的所有元素求和,计算和的最小值。 注意:两对元素如果对应…...
进程间通信——网络通信——UDP
进程间通信(分类):网络通信、无名管道、有名管道、信号、消息队列、共享内存、信号量集 OSI七层模型:(理论模型) 应用层 : 要传输的数据信息,如文件传输,电子邮件等 表示层 : 数…...
【我的 PWN 学习手札】IO_FILE 之 FSOP
FSOP:File Stream Oriented Programming 通过劫持 _IO_list_all 指向伪造的 _IO_FILE_plus,进而调用fake IO_FILE 结构体对象中被伪造的vtable指向的恶意函数。 目录 前言 一、glibc-exit函数浅析 二、FSOP 三、Largebin attack FSOP (…...
新兴的开源 AI Agent 智能体全景技术栈
新兴的开源 AI Agent 智能体全景技术栈 LLMs:开源大模型嵌入模型:开源嵌入模型模型的访问和部署:Ollama数据存储和检索:PostgreSQL, pgvector 和 pgai后端:FastAPI前端:NextJS缺失的一环:评估和…...
统计学习方法(第二版) 概率分布学习
本文主要介绍机器学习的概率分布,帮助后续的理解。 定义直接从书上搬的想自己写,但没有定义准确,还浪费事件,作为个人笔记,遇到速查。 目录 一、二点分布(0-1分布、伯努利分布) 二、二项分布…...
淺談Cocos2djs逆向
前言 簡單聊一下cocos2djs手遊的逆向,有任何相關想法歡迎和我討論^^ 一些概念 列出一些個人認為比較有用的概念: Cocos遊戲的兩大開發工具分別是CocosCreator和CocosStudio,區別是前者是cocos2djs專用的開發工具,後者則是coco…...
【ROS2】RViz2加载URDF模型文件
1、RViz2加载URDF模型文件 1)运行RViz2 rviz22)添加组件:RobotModel 3)选择通过文件添加 4)选择URDF文件,此时会报错,需要修改Fixed Frame为map即可 5)因为没有坐标转换,依然会报错,下面尝试解决 2、运行坐标转换节点 1)运行ROS节点:robot_state_publishe...
Unity导入特效,混合模式无效问题
检查spine导出设置与Unity导入设置是否一致 检查Blend Mode Materials是否勾选 检查是否使用导入时产生的对应混合模式的材质,混合模式不适用默认材质 这里选导入时生成的材质...
el-table自定义按钮控制扩展expand
需求:自定义按钮实现表格扩展内容的展开和收起,实现如下: 将type“expand”的表格列的宽度设置为width"1",让该操作列不展示出来,然后通过ref动态调用组件的内部方法toggleRowExpansion(row, row.expanded)控…...
opencv CV_TM_SQDIFF未定义标识符
opencv CV_TM_SQDIFF未定义标识符 opencv4部分命名发生变换,将CV_WINDOW_AUTOSIZE改为WINDOW_AUTOSIZE;CV_TM_SQDIFF_NORMED改为TM_SQDIFF_NORMED。...
2024acl论文体悟
总结分析归纳 模型架构与训练方法:一些论文关注于改进大语言模型的架构和训练方法,以提高其性能和效率。例如,“Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models”提出了一种量化侧调优方法&a…...
【Git原理与使用】版本回退reset 详细介绍、撤销修改、删除文件
目录 一、版本回退 reset 1.1 指令: 1.2 参数说明: 1.3 演示: 二、撤销修改 情况一:对于工作区的代码,还没有 add 情况二:已经 add ,但没有 commit 情况三:已经 add &…...
反规范化带来的数据不一致问题的解决方案
在数据库设计中,规范化(Normalization)和反规范化(Denormalization)是两个相互对立但又不可或缺的概念。规范化旨在消除数据冗余,确保数据的一致性和准确性,但可能会降低查询效率。相反…...
【Android】直接使用binder的transact来代替aidl接口
aidl提供了binder调用的封装,有的时候,比如: 1. 懒得使用aidl生成的接口文件(确实是懒,Android studio中aidl生成接口文件很方便) 2. 服务端的提供者只公开了部分接口出来,只给了调用编号和参…...
Python机器学习笔记(十八、交互特征与多项式特征)
添加原始数据的交互特征(interaction feature)和多项式特征(polynomial feature)可以丰富特征表示,特别是对于线性模型。这种特征工程可以用统计建模和许多实际的机器学习应用中。 上一次学习:线性模型对w…...
《跟我学Spring Boot开发》系列文章索引❤(2025.01.09更新)
章节文章名备注第1节Spring Boot(1)基于Eclipse搭建Spring Boot开发环境环境搭建第2节Spring Boot(2)解决Maven下载依赖缓慢的问题给火车头提提速第3节Spring Boot(3)教你手工搭建Spring Boot项目纯手工玩法…...
【AI进化论】 如何让AI帮我们写一个项目系列:将Mysql生成md文档
一、python脚本 下面给出一个简易 Python 脚本示例,演示如何自动获取所有表的结构,并生成一份 Markdown 文件。你可根据自己的需求做修改或使用其他编程语言。 import mysql.connector# ------------------------ # 1. 连接数据库 # -----------------…...
(已开源-AAAI25) RCTrans:雷达相机融合3D目标检测模型
在雷达相机融合三维目标检测中,雷达点云稀疏、噪声较大,在相机雷达融合过程中提出了很多挑战。为了解决这个问题,我们引入了一种新的基于query的检测方法 Radar-Camera Transformer (RCTrans)。具体来说: 首先设计了一个雷达稠密…...
Elasticsearch:在 HNSW 中提前终止以实现更快的近似 KNN 搜索
作者:来自 Elastic Tommaso Teofili 了解如何使用智能提前终止策略让 HNSW 加快 KNN 搜索速度。 在高维空间中高效地找到最近邻的挑战是向量搜索中最重要的挑战之一,特别是当数据集规模增长时。正如我们之前的博客文章中所讨论的,当数据集规模…...
unittest VS pytest
以下是 unittest 和 pytest 框架的对比表格: 特性unittestpytest设计理念基于类的设计,类似于 Java 的 JUnit更简洁,基于函数式编程设计,支持类和函数两种方式测试编写需要继承 unittest.TestCase 类,方法以 test_ 开…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
Python环境安装与虚拟环境配置详解
本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南,适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者,都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...
Python第七周作业
Python第七周作业 文章目录 Python第七周作业 1.使用open以只读模式打开文件data.txt,并逐行打印内容 2.使用pathlib模块获取当前脚本的绝对路径,并创建logs目录(若不存在) 3.递归遍历目录data,输出所有.csv文件的路径…...
深入解析 ReentrantLock:原理、公平锁与非公平锁的较量
ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...
性能优化中,多面体模型基本原理
1)多面体编译技术是一种基于多面体模型的程序分析和优化技术,它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象,通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中࿰…...
使用 uv 工具快速部署并管理 vLLM 推理环境
uv:现代 Python 项目管理的高效助手 uv:Rust 驱动的 Python 包管理新时代 在部署大语言模型(LLM)推理服务时,vLLM 是一个备受关注的方案,具备高吞吐、低延迟和对 OpenAI API 的良好兼容性。为了提高部署效…...
