H2数据库在单元测试中的应用
H2数据库特征
用比较简洁的话来介绍h2数据库,就是一款轻量级的内存数据库,支持标准的SQL语法和JDBC API,工业领域中,一般会使用h2来进行单元测试。
这里贴一下h2数据库的主要特征
- Very fast database engine
- Open source
- Written in Java
- Supports standard SQL, JDBC API
- Embedded and Server mode, Clustering support
- Strong security features
- The PostgreSQL ODBC driver can be used
- Multi version concurrency
还有一些附加的特征,也列一下
- Disk based or in-memory databases and tables, read-only database support, temporary tables
- Transaction support (read uncommitted, read committed, repeatable read, snapshot), 2-phase-commit
- Multiple connections, row-level locking
- Cost based optimizer, using a genetic algorithm for complex queries, zero-administration
- Scrollable and updatable result set support, large result set, external result sorting, functions can return a result set
- Encrypted database (AES), SHA-256 password encryption, encryption functions, SSL
H2数据库的两种连接模式
内嵌模式 Embedded Mode

在内嵌模式中,h2数据库和应用程序是在一个JVM进程中,这种模式的优点就是速度极快,缺点也是显而易见的,因为和应用程序在同一个进程中,是会共享内存、CPU、线程等资源的,如果共享资源没有协调好,很有可能就会造成数据库不可用甚至崩溃。
服务器模式 Server Mode

在服务器模式中,应用程序是通过JDBC的方式连接h2数据库,相比内嵌方式,这种模式的速率会有所降低,因为有数据传输的损耗。
可能还会有一些资料介绍说有第三种混合模式,第三种混合模式是针对两个应用来说的,第一个应用使用内嵌的方式连接h2数据库,另外一个应用通过服务器模式连接h2数据库,其实本质还是这两种模式。
H2数据库集成springboot
pom依赖
<dependency><groupId>com.h2database</groupId><artifactId>h2</artifactId><version>2.2.220</version>
</dependency>
配置文件
server:port: 9090mybatis:type-aliases-package: com.tml.mouseDemo.modelmapper-locations: classpath:mapper/*.xmlspring:datasource:driver-class-name: org.h2.Driverurl: jdbc:h2:mem:db_users;MODE=MYSQL;INIT=RUNSCRIPT FROM 'classpath:init_table.sql'username: tmlpassword: helloTmlh2:console:enabled: true
在单元测试中,一般都是使用内嵌内存模式,内存模式不会造成数据的污染,因为数据会随着程序的结束而销毁
这里的init_table.sql是H2的初始化脚本,可以初始化单元测试用例需要的用例数据,也贴一下文本
create table t_user
(id int not null primary key auto_increment,user_name varchar(100),password varchar(100),status int,create_time datetime);insert into t_user (user_name,password,status,create_time) values ('tml','hello world',1,now());
初始化脚本init_table.sql和配置文件application.yml的层级关系如下图

mapper接口
package com.tml.mouseDemo.mapper;import com.tml.mouseDemo.model.User;
import org.apache.ibatis.annotations.Mapper;
import org.apache.ibatis.annotations.Param;import java.util.List;@Mapper
public interface UserMapper {List<User> listByName(@Param("userName") String userName);User getOneUser(@Param("uid") Long uid);}
实体类
package com.tml.mouseDemo.model;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;import java.io.Serializable;
import java.util.Date;@Data
@AllArgsConstructor
@NoArgsConstructor
public class User implements Serializable {private static final long serialVersionUID = -4489033966046239802L;private Long id;private String userName;private String password;private Integer status;private Date createTime;}
Mapper XML File
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.tml.mouseDemo.mapper.UserMapper"><resultMap id="BaseResultMap" type="com.tml.mouseDemo.model.User"><id column="id" jdbcType="BIGINT" property="id"/><result column="user_name" jdbcType="VARCHAR" property="userName"/><result column="password" jdbcType="VARCHAR" property="password"/><result column="create_time" jdbcType="TIMESTAMP" property="createTime"/><result column="status" jdbcType="INTEGER" property="status"/></resultMap><select id="listByName" resultMap="BaseResultMap">SELECT *FROM `t_user` tWHERE t.`user_name` = #{userName}</select><select id="getOneUser" resultMap="BaseResultMap">SELECT *FROM `t_user` tWHERE t.`id` = #{uid}</select></mapper>
至此,一个简单的springboot项目集成h2数据库就完成了。
利用h2进行单元测试
一个基于init_table.sql中的初始化数据的断言测试用例如下
package com.tml.mouseDemo;import com.tml.mouseDemo.mapper.UserMapper;
import com.tml.mouseDemo.model.User;
import lombok.extern.slf4j.Slf4j;
import org.junit.Assert;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;import java.util.List;@SpringBootTest
@RunWith(SpringRunner.class)
@Slf4j
public class MouseDemoApplicationTests {@Autowiredprivate UserMapper userMapper;@Testpublic void testH2() {List<User> users = userMapper.listByName("tml");Assert.assertEquals(1, users.size());}}
H2数据库控制台
当java进程在运行中的时候,并且程序是开启了h2数据库的控制台 【spring.h2.console.enabled=true】,此时是可以直接通过http://localhost:9090/h2-console访问控制台,端口是内嵌java应用的端口号,登录时需要用账号密码,账号密码就是配置文件application.yml中的username、password,效果图如下

总结
h2数据库的基本用法就是这样,大家可以根据h2数据库自身的特点尽情发挥,详情可以参考官网https://www.h2database.com/html/features.html
切记,不要在生产环境轻易使用h2数据库
相关文章:
H2数据库在单元测试中的应用
H2数据库特征 用比较简洁的话来介绍h2数据库,就是一款轻量级的内存数据库,支持标准的SQL语法和JDBC API,工业领域中,一般会使用h2来进行单元测试。 这里贴一下h2数据库的主要特征 Very fast database engineOpen sourceWritten…...
部署HugeGraph
部署HugeGraph 这里以hugegraph1.2.0为例子,演示一下如何安装部署hugegraph 一、下载并安装JDK11 下载JDK11 https://www.oracle.com/java/technologies/downloads/#java11 使用scp命令将安装包上传到服务器 scp /path/to/local/file usernameserver_ip:/path/…...
2025年第三届“华数杯”国际赛A题解题思路与代码(Matlab版)
游泳竞技策略优化模型代码详解(MATLAB版) 第一题:速度优化模型 本部分使用MATLAB实现游泳运动员在不同距离比赛中的速度分配策略优化。 1. 模型概述 模型包含三个主要文件: speed_optimization.m: 核心优化类plot_speeds.m: …...
嵌入式基础 -- IMX8MP的 GPC 模块技术
General Power Controller (GPC) 模块技术文档 1. GPC 模块简介 1.1 模块功能 GPC(General Power Controller)模块是用于 i.MX8M Plus 应用处理器 的电源管理组件,支持以下功能: 管理 ARM Cortex-A53 和 Cortex-M7 平台的低功…...
选择器css
1.a标签选择 // 选中所具有herf 的元素 [herf] {color: skyblue; } // 选中所具有herfhttps://fanyi.youdao.com/ 的元素 [herf$"youdao.com"] {color:pink; } // 按此顺序书写 link visited hover active // 未访问状态 a:link {color:orange } // 访问状态 a…...
全方位解读消息队列:原理、优势、实例与实践要点
全方位解读消息队列:原理、优势、实例与实践要点 一、消息队列基础认知 在数字化转型浪潮下,分布式系统架构愈发复杂,消息队列成为其中关键一环。不妨把消息队列想象成一个超级“信息驿站”,在古代,各地的信件、物资运…...
JavaScript运算符与控制结构
JavaScript作为一门强大的前端语言,提供了丰富的运算符与控制结构,使程序逻辑更加灵活与高效。 1. JavaScript运算符 算术运算符 运算符描述示例结果加法5 38-减法7 - 43*乘法2 * 612/除法8 / 24%取模(余数)10 % 31**幂运算3 …...
2030年中国AI人才缺口或达400万,近屿智能助力AI人才储备增长
在当今数字化浪潮下,人工智能(AI)已成为推动各行业发展的关键力量。然而,吸引和留住 AI 人才正成为全球性难题,中国亦不例外。据麦肯锡 2022 年全球人工智能商业高管调查,75% 的中国受访者在招聘数据科学家…...
如何设计一个注册中心?以Zookeeper为例
这是小卷对分布式系统架构学习的第8篇文章,在写第2篇文章已经讲过服务发现了,现在就从组件工作原理入手,讲讲注册中心 以下是面试题: 某团面试官:你来说说怎么设计一个注册中心? 我:注册中心嘛&…...
ubuntu 20.04 安装docker--小白学习之路
更新包 sudo apt-get update # 安装需要的软件包以使apt能够通过HTTPS使用仓库 sudo apt-get install ca-certificates curl gnupg lsb-release 使用清华大学源 # 添加Docker官方的GPG密钥 curl -fsSL https://mirrors.tuna.tsinghua.edu.cn/docker-ce/linux/ubuntu/gpg | sudo…...
【大厂面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据...本篇介绍 密集行人检测的遮挡问题怎么解决?
【大厂面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据…本篇介绍 密集行人检测的遮挡问题怎么解决? 【大厂面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据…本篇介绍 密集行人检测的遮挡问题怎么解决? 文章目录 …...
Tableau数据可视化与仪表盘搭建-可视化原则及BI仪表盘搭建
目录 可视化原则 BI仪表盘搭建 仪表盘搭建原则 明确仪表盘主题 仪表盘主题拆解 开发设计工作表 经营情况总览:突出显示的文字 经营数据详情:表格 每日营收数据:多轴折线图 每日流量数据:双轴组合图 新老客占比…...
TensorFlow Quantum快速编程(基本篇)
一、TensorFlow Quantum 概述 1.1 简介 TensorFlow Quantum(TFQ)是由 Google 开发的一款具有开创性意义的开源库,它宛如一座桥梁,巧妙地将量子计算与 TensorFlow 强大的机器学习功能紧密融合。在当今科技飞速发展的时代,传统机器学习虽已取得诸多瞩目成就,然而面对日益…...
ELK日志分析实战宝典之ElasticSearch从入门到服务器部署与应用
目录 ELK工作原理展示图 一、ElasticSearch介绍(数据搜索和分析) 1.1、特点 1.2、数据组织方式 1.3、特点和优势 1.3.1、分布式架构 1.3.2、强大的搜索功能 1.3.3、数据处理与分析 1.3.4、多数据类型支持 1.3.5、易用性与生态系统 1.3.6、高性…...
git 转移文件夹
打开终端或命令行界面:首先,确保你的电脑上安装了 Git,并打开终端或命令行界面。 导航到你的仓库目录:使用 cd 命令来切换到包含你想要移动文件夹的仓库的目录。 cd /path/to/your/repository使用 git mv 命令移动文件夹&#x…...
C#,图论与图算法,输出无向图“欧拉路径”的弗勒里(Fleury Algorithm)算法和源程序
1 欧拉路径 欧拉路径是图中每一条边只访问一次的路径。欧拉回路是在同一顶点上开始和结束的欧拉路径。 这里展示一种输出欧拉路径或回路的算法。 以下是Fleury用于打印欧拉轨迹或循环的算法(源)。 1、确保图形有0个或2个奇数顶点。2、如果有0个奇数顶…...
计算机网络之---OSI七层模型
为什么会有七层模型 OSI七层模型的出现源于计算机网络技术的发展需求,主要解决以下几个问题: 标准化与互操作性 随着计算机网络的快速发展,不同厂商、不同技术之间的设备和系统需要能够无缝通信。而不同厂商在网络硬件、软件、协议等方面存在…...
mysql的mvcc理解
人阅读 一、说到mvcc就少不了事务隔离级别(大白话解释) 序列化(SERIALIZABLE):事务之间完全隔离,当成一个序列,一个一个执行。 1 可重复读(REPEATABLE READ)ÿ…...
leetcode 面试经典 150 题:两数之和
链接两数之和题序号1题型数组解题方法1. 哈希表,2. 暴力法难度简单熟练度✅✅✅✅✅ 题目 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输…...
nexus搭建maven私服
说到maven私服每个公司都有,比如我上一篇文章介绍的自定义日志starter,就可以上传到maven私服供大家使用,每次更新只需deploy一下就行,以下就是本人搭建私服的步骤 使用docker安装nexus #拉取镜像 docker pull sonatype/nexus3:…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果