当前位置: 首页 > news >正文

力扣经典二分题:4. 寻找两个正序数组的中位数

题目链接:4. 寻找两个正序数组的中位数 - 力扣(LeetCode)

一、题目分析

  • 这道题目是让我们在 两个正序的数组中寻找中位数
  • 已知两个数组的大小分别是:int m = nums1.size(),n = nums2.size();
  • 中位数性质1:中位数左侧元素 ≤ 中位数 且 中位数右侧元素 ≥ 中位数 (以升序来看)
  • 中位数性质2:对于一个长度为 N 的数组,中位数将数组一分为二,使得左侧与右侧得元素长度差 ≤ 1
  • 当 m + n 为奇数时,我们需要找到合并后数组中第 k + 1 小的元素,其中 k = (m + n) / 2。
  • 当 m + n 为偶数时,我们需要找到合并后数组中第 k 和第 k + 1 小的元素,然后计算它们的平均值,其中 k = (m + n) / 2 - 1(注意这里 k 是基于 0 的索引,所以实际要找的元素位置是 k 和 k + 1)。

二、算法原理讲解

解法一:暴力排序

通过合并排序的原理,通过中位数的性质,可快速得到中位数的下标,较为简单

时间复杂度为O(M+N),空间复杂度为O(M+N)

解法二:双指针 

时间复杂度为O(M+N),空间复杂度为O(1)

解法三:暴力枚举
解法四:二分优化 
 

三、编写代码

class Solution {
public:double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {int m = nums1.size(), n = nums2.size();if(m > n) swap(nums1,nums2); // 保证nums1始终是较短数组int k = (m + n + 1) / 2; // 应划分给小数组的个数// 枚举 i [0,m]for(int i = 0;i <= m;i++){int&& j = k - i;// 分割线周围的四个值int a = i == m ? INT_MAX :nums1[i];int b = i == 0 ? INT_MIN :nums1[i-1];cout << i << ' ' << j << endl;int c = j == n ? INT_MAX :nums2[j];int d = j == 0 ? INT_MIN :nums2[j-1];// 分割线是否合法if(b <= c && d <= a){if((m + n) % 2 == 1) return max(b,d);else return (double)(max(b,d) + min(c,a)) / 2;}}return 1314.521;}
};

 

class Solution {
public:double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {// 保证nums1始终是较短数组if(nums1.size() > nums2.size()) swap(nums1,nums2);// 应划分给小数组的个数int k = (nums1.size() + nums2.size() + 1) / 2; // 枚举nums1数组中应该划分给小数组的元素个数(二分优化)int left = 0,right = nums1.size();while(left < right){// mid ∈ [0,m]int i = (left + right + 1) / 2; int j = k - i;cout << i << endl;if(nums1[i-1] <= nums2[j]) left = i;else right = i - 1;}// 分割线两边的值int a = left == nums1.size() ? INT_MAX :nums1[left];int b = left == 0 ? INT_MIN :nums1[left-1];int c = (k-left) == nums2.size() ? INT_MAX :nums2[k-left];int d = (k-left) == 0 ? INT_MIN :nums2[k-left-1];// 处理数据+返回if((nums1.size() + nums2.size()) % 2 == 1) return max(b,d);else return (double)(max(b,d) + min(c,a)) / 2;}
};

相关文章:

力扣经典二分题:4. 寻找两个正序数组的中位数

题目链接&#xff1a;4. 寻找两个正序数组的中位数 - 力扣&#xff08;LeetCode&#xff09; 一、题目分析 这道题目是让我们在 两个正序的数组中寻找中位数已知两个数组的大小分别是&#xff1a;int m nums1.size(),n nums2.size();中位数性质1&#xff1a;中位数左侧元素 …...

解决WordPress出现Fatal error: Uncaught TypeError: ftp_nlist()致命问题

错误背景 WordPress版本&#xff1a;wordpress-6.6.2-zh_CN WooCommerce版本&#xff1a;woocommerce.9.5.1 WordPress在安装了WooCommerce插件后&#xff0c;安装的过程中没有问题&#xff0c;在安装完成后提示&#xff1a; 此站点遇到了致命错误&#xff0c;请查看您站点管理…...

Excel 技巧07 - 如何计算到两个日期之间的工作日数?(★)如何排除节假日计算两个日期之间的工作日数?

本文讲了如何在Excel中计算两个日期之间的工作日数&#xff0c;以及如何排除节假日计算两个日期之间的工作日数。 1&#xff0c;如何计算到两个日期之间的工作日数&#xff1f; 其实就是利用 NETWORKDAYS.INTL 函数 - weekend: 1 - 星期六&#xff0c;星期日 2&#xff0c;如…...

快速实现一个快递物流管理系统:实时更新与状态追踪

物流管理是电商、仓储和配送等行业的重要组成部分。随着电子商务的快速发展&#xff0c;快递物流的高效管理和实时状态更新变得尤为关键。本文将演示如何使用Node.js、Express、MongoDB等技术快速构建一个简单的快递物流管理系统&#xff0c;该系统支持快递订单的实时更新和追踪…...

kvm 解决 安装windows 虚拟机cpu 核数问题

通过lscpu命令查到我本机的cpu信息如下 CPU(s): 12 —— 系统的总逻辑处理单元数量&#xff08;包括所有核心和逻辑处理器&#xff09;。Thread(s) per core: 2 —— 每个物理核心支持 2 个线程&#xff08;表示启用了超线程技术&#xff09;。Core(s) per socket: 6 —— 每个…...

Ansys Fluent Aeroacoustics 应用

探索 Ansys Fluent 在气动声学领域的前沿功能&#xff0c;彻底改变各行各业解决降噪和提高音质的方式。 了解气动声学 气动声学是声学的一个分支&#xff0c;它处理湍流流体运动产生的噪声以及这些声音通过流体介质&#xff08;如空气&#xff09;的传播。这个领域在工程中至…...

119.使用AI Agent解决问题:Jenkins build Pipeline时,提示npm ERR! errno FETCH_ERROR

目录 1.Jenkins Build时的错误 2.百度文心快码AI智能体帮我解决 提问1&#xff1a;jenkins中如何配置npm的源 提问2&#xff1a;jenkins pipeline 类型为pipeline script from SCM时&#xff0c;如何配置npm源 3.最终解决方法-Jenkinsfile的修改 4.感触 1.Jenkins Build时…...

istio-proxy内存指标

在 Istio 环境中&#xff0c;istio-proxy 是 Envoy 的边车代理容器。通过运行命令 curl localhost:15000/memory&#xff0c;或者curl localhost:15000/stats 可以查询 Envoy 的内存统计信息。以下是典型返回结果的结构和意义&#xff1a; 返回结果单位是bytes&#xff0c;需/…...

List详解 - 双向链表的操作

在C中&#xff0c;std::list是标准模板库&#xff08;STL&#xff09;中的一个容器&#xff0c;它实现了双向链表的数据结构。与数组或向量&#xff08;std::vector&#xff09;不同&#xff0c;std::list允许在常数时间内进行插入和删除操作&#xff0c;尤其是在链表的任意位置…...

多目标优化算法之一:基于分解的方法

在多目标优化算法中,“基于分解的方法”通常指的是将多目标优化问题(MOP)分解为多个单目标优化子问题,并同时优化这些子问题。这种方法的核心思想是通过引入权重向量或参考点,将多目标问题转化为多个标量优化问题,每个子问题都关注于原始问题的一个特定方面或视角。这样可…...

conntrack iptables 安全组

centos 安装yum install conntrack-tools 1. conntrack状态 NEW: 新建连接&#xff08;第一次包&#xff09;。 ESTABLISHED: 已建立连接&#xff0c;正在传输数据。 RELATED: 与已有连接相关的连接&#xff0c;如 FTP 数据连接。 INVALID: 无效连接&#xff0c;无法识别或不…...

stringRedisTemplate.execute执行lua脚本

stringRedisTemplate.execute执行lua脚本 1. 引入必要依赖 确保项目中已经引入了Spring Data Redis相关依赖&#xff0c;例如在 Maven 项目中&#xff0c;一般会有如下依赖&#xff08;版本号根据实际情况调整&#xff09;&#xff1a; <dependency><groupId>or…...

HDFS异构存储和存储策略

一、HDFS异构存储类型 1.1 冷、热、温、冻数据 通常&#xff0c;公司或者组织总是有相当多的历史数据占用昂贵的存储空间。典型的数据使用模式是新传入的数据被应用程序大量使用&#xff0c;从而该数据被标记为"热"数据。随着时间的推移&#xff0c;存储的数据每周…...

生成idea ui风格界面代码

创建一个类似 IntelliJ IDEA 的用户界面&#xff08;UI&#xff09;涉及多个组件和复杂的布局设计。为了简化这个过程&#xff0c;我们可以使用 **Java Swing** 或 **JavaFX** 来实现一个基本的 IDE 界面&#xff0c;模仿 IntelliJ IDEA 的主要布局元素&#xff0c;如菜单栏、工…...

嵌入式C语言:二维数组

目录 一、二维数组的定义 二、内存布局 2.1. 内存布局特点 2.2. 内存布局示例 2.2.1. 数组元素地址 2.2.2. 内存布局图&#xff08;简化表示&#xff09; 2.3. 初始化对内存布局的影响 三、访问二维数组元素 3.1. 常规下标访问方式 3.2. 通过指针访问 3.2.1. 指向数…...

【机器学习:四、多输入变量的回归问题】

多输入变量的回归问题 1. 多元线性回归概述 1.1 单变量线性回归与多变量线性回归的概念区分 单变量线性回归&#xff1a;用于预测一个因变量&#xff08;输出变量&#xff09;与单一自变量&#xff08;输入变量&#xff09;之间的线性关系。模型形式为&#xff1a; y θ 0 …...

JVM实战—OOM的定位和解决

1.如何对系统的OOM异常进行监控和报警 (1)最佳的解决方案 最佳的OOM监控方案就是&#xff1a;建立一套监控平台&#xff0c;比如搭建Zabbix、Open-Falcon之类的监控平台。如果有监控平台&#xff0c;就可以接入系统异常的监控和报警&#xff0c;可以设置当系统出现OOM异常&…...

iOS 本地新项目上传git仓库,并使用sourceTree管理

此文记录的场景描述&#xff1a; iOS前期开发时&#xff0c;在本地创建项目&#xff0c;直至开发一段时间&#xff0c;初期编码及框架已完善后&#xff0c;才拿到git仓库的地址。此时需要将本地代码上传到git仓库。 上传至git仓库&#xff0c;可以使用终端&#xff0c;键入命令…...

mysql之基本select语句 运算符 排序分页

1.SQL的分类 DDL:数据定义语言. CREATE ALTER DROP RENAME TRUNCATE DML: 数据操作语言. INSERT DELETE UPDATE SELECT 重中之重 DCL: 数据控制语言. COMMIT ROLLBACK SAVEPOINT GRANT REVOKE 2.SQL语言的规则与规范 1.基本规则 SQL可以在一行或多行,为了提高可…...

如何在 Ubuntu 22.04 上安装 Nagios 服务器教程

简介 在本教程中&#xff0c;我们将解释如何在 Ubuntu 22.04 上安装和配置 Nagios&#xff0c;使用 Apache 作为 Web 服务器&#xff0c;并通过 Let’s Encrypt Certbot 使用 SSL 证书进行保护。 Nagios 是一个强大的监控系统&#xff0c;它可以帮助组织在 IT 基础设施问题影…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

Java后端检查空条件查询

通过抛出运行异常&#xff1a;throw new RuntimeException("请输入查询条件&#xff01;");BranchWarehouseServiceImpl.java // 查询试剂交易&#xff08;入库/出库&#xff09;记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...

SQL注入篇-sqlmap的配置和使用

在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap&#xff0c;但是由于很多朋友看不了解命令行格式&#xff0c;所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习&#xff0c;链接&#xff1a;https://wwhc.lanzoue.com/ifJY32ybh6vc…...

起重机起升机构的安全装置有哪些?

起重机起升机构的安全装置是保障吊装作业安全的关键部件&#xff0c;主要用于防止超载、失控、断绳等危险情况。以下是常见的安全装置及其功能和原理&#xff1a; 一、超载保护装置&#xff08;核心安全装置&#xff09; 1. 起重量限制器 功能&#xff1a;实时监测起升载荷&a…...