当前位置: 首页 > news >正文

二叉树层序遍历 Leetcode102.二叉树的层序遍历

二叉树的层序遍历相当于图论的广度优先搜索,用队列来实现

(二叉树的递归遍历相当于图论的深度优先搜索)

102.二叉树的层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]

思路解析

  1. 层序遍历的核心思想

    • 层序遍历(或广度优先搜索,BFS)是通过逐层访问节点来遍历树。
    • 通常利用 队列(queue) 数据结构完成,每次处理一层的所有节点,然后将下一层的节点加入队列。
  2. 算法步骤

    1. 特殊情况处理
      • 如果树为空(root == nullptr),直接返回空的二维数组。
    2. 初始化队列
      • 创建一个队列 que,将根节点 root 入队。
    3. 逐层遍历
      • 每次记录当前队列的大小(size),代表当前层的节点数量。
      • 遍历这一层的节点,依次从队列中取出节点,存入当前层的结果数组(vec)。
      • 如果节点有左子节点或右子节点,将其加入队列,作为下一层要访问的节点。
    4. 记录结果
      • 将当前层的结果数组 vec 添加到最终结果数组 result 中。
    5. 重复上述过程,直到队列为空。
    6. 返回结果
      • 最终返回存储每一层节点值的二维数组 result

que 是一个存储 TreeNode* 类型的队列

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
#include <vector>
#include <queue>
using namespace std;class Solution {
public:vector<vector<int>> levelOrder(TreeNode* root) {vector<vector<int>> result; // 用于存储最终的层序遍历结果if (root == nullptr) return result; // 如果根节点为空,返回空的结果queue<TreeNode*> que; // 队列用于辅助层序遍历que.push(root); // 将根节点加入队列while (!que.empty()) {int size = que.size(); // 当前层的节点数量vector<int> vec; // 用于存储当前层的节点值for (int i = 0; i < size; i++) {TreeNode* node = que.front(); // 取出队首节点que.pop(); // 弹出队首节点vec.push_back(node->val); // 存储当前节点的值// 将左子节点加入队列if (node->left) {que.push(node->left);}// 将右子节点加入队列if (node->right) {que.push(node->right);}}result.push_back(vec); // 将当前层的节点值存入结果中}return result; // 返回最终结果}
};

107.二叉树的层序遍历||

给你二叉树的根节点 root ,返回其节点值 自底向上的层序遍历 。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[15,7],[9,20],[3]]

思路:我们可以先进行标准的层序遍历,然后将结果逆序。

只需在return result前多加一个 reverse(result.begin(), result.end());

199.二叉树的右视图

给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

示例 1:

输入:root = [1,2,3,null,5,null,4]

输出:[1,3,4]

解释:

思路:就是其他的元素都不存入,只存入一行中最右边的那个元素

 if (i == size - 1) {result.push_back(node->val);}

所以最后的result就不是二维数组,而是一维数组来存入元素

#include <vector>
#include <queue>
using namespace std;class Solution {
public:vector<int> rightSideView(TreeNode* root) {vector<int> result; // 用于存储右视图的节点值if (root == nullptr) return result; // 如果树为空,直接返回空的结果queue<TreeNode*> que; // 队列用于辅助层序遍历que.push(root); // 根节点入队while (!que.empty()) {int size = que.size(); // 当前层的节点数量for (int i = 0; i < size; i++) {TreeNode* node = que.front(); // 获取队首节点que.pop(); // 弹出队首节点// 如果是当前层的最后一个节点,存入结果if (i == size - 1) {result.push_back(node->val);}// 左子节点入队if (node->left) {que.push(node->left);}// 右子节点入队if (node->right) {que.push(node->right);}}}return result; // 返回右视图结果}
};

637.二叉树的层平均值

给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[3.00000,14.50000,11.00000]
解释:第 0 层的平均值为 3,第 1 层的平均值为 14.5,第 2 层的平均值为 11 。
因此返回 [3, 14.5, 11] 。

只需要增加计算每层平均数的功能即可

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<double> averageOfLevels(TreeNode* root) {vector<double> result; // 用于存储最终的层序遍历结果if (root == nullptr) return result; // 如果根节点为空,返回空的结果double arg=0;queue<TreeNode*> que; // 队列用于辅助层序遍历que.push(root); // 将根节点加入队列while (!que.empty()) {int size = que.size(); // 当前层的节点数量vector<int> vec; // 用于存储当前层的节点值for (int i = 0; i < size; i++) {TreeNode* node = que.front(); // 取出队首节点que.pop(); // 弹出队首节点arg+=node->val;// 将左子节点加入队列if (node->left) {que.push(node->left);}// 将右子节点加入队列if (node->right) {que.push(node->right);}}result.push_back(arg/size); // 将当前层的节点值存入结果中arg=0;}return result; // 返回最终结果 }
};
  • 429.N叉树的层序遍历(opens new window)
  • 515.在每个树行中找最大值(opens new window)
  • 116.填充每个节点的下一个右侧节点指针(opens new window)
  • 117.填充每个节点的下一个右侧节点指针II(opens new window)
  • 104.二叉树的最大深度(opens new window)
  • 111.二叉树的最小深度

还有几道题下次再写

相关文章:

二叉树层序遍历 Leetcode102.二叉树的层序遍历

二叉树的层序遍历相当于图论的广度优先搜索&#xff0c;用队列来实现 &#xff08;二叉树的递归遍历相当于图论的深度优先搜索&#xff09; 102.二叉树的层序遍历 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右…...

DELTA并联机械手视觉方案荣获2024年度机器人应用典型案例奖

直击现场 2025年1月9日晚&#xff0c;2024深圳市机器人年度评选颁奖典礼在深圳市南山区圣淘沙酒店正式拉开帷幕。本次颁奖活动由中国科学院深圳先进技术研究院指导&#xff0c;深圳市机器人协会与《机器人与智能系统》杂志组织承办。 正运动公司受邀参与此次典礼&#xff0c;…...

Netty 入门学习

前言 学习Spark源码绕不开通信&#xff0c;Spark通信是基于Netty实现的&#xff0c;所以先简单学习总结一下Netty。 Spark 通信历史 最开始: Akka Spark 1.3&#xff1a; 开始引入Netty&#xff0c;为了解决大块数据&#xff08;如Shuffle&#xff09;的传输问题 Spark 1.6&…...

Magentic-One、AutoGen、LangGraph、CrewAI 或 OpenAI Swarm:哪种多 AI 代理框架最好?

目录 一、说明 二、 AutoGen-自动生成&#xff08;微软&#xff09; 2.1 特征 2.2 局限性 三、 CrewAI 3.1 特征 3.2 限制&#xff1a; 四、LangGraph 4.1 特征&#xff1a; 4.2 限制&#xff1a; 五、OpenAI Swarm 5.1 特征 5.2 限制 六、Magentic-One 6.1 特征 6.2 限制 七、…...

openstack下如何生成centos9 centos10 和Ubuntu24 镜像

如何生成一个centos 10和centos 9 的镜像1. 下载 对应的版本 wget https://cloud.centos.org/centos/10-stream/x86_64/images/CentOS-Stream-GenericCloud-x86_64-10-latest.x86_64.qcow2 wget https://cloud.centos.org/centos/9-stream/x86_64/images/CentOS-Stream-Gener…...

Kivy App开发之UX控件Slider滑块

在app中可能会调节如音量,亮度等,可以使用Slider来实现,该控件调用方便,兼容性好,滑动平稳。在一些参数设置中,也可以用来调整数值。 支持水平和垂直方向,可以设置默认值,最小及最大值。 使用方法,需用引入Slider类,通过Slider类生成一个滑块并设置相关的样式后,再…...

CSS——22.静态伪类(伪类是选择不同元素状态)

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>静态伪类</title> </head><body><a href"#">我爱学习</a></body> </html>单击链接前的样式 左键单击&#xff08;且…...

python学opencv|读取图像(三十)使用cv2.getAffineTransform()函数倾斜拉伸图像

【1】引言 前序已经学习了如何平移和旋转缩放图像&#xff0c;相关文章链接为&#xff1a; python学opencv|读取图像&#xff08;二十七&#xff09;使用cv2.warpAffine&#xff08;&#xff09;函数平移图像-CSDN博客 python学opencv|读取图像&#xff08;二十八&#xff0…...

Unity3D中基于ILRuntime的组件化开发详解

前言 在Unity3D开发中&#xff0c;组件化开发是一种高效且灵活的软件架构方式。通过将游戏功能拆分为独立的、可重用的组件&#xff0c;开发者可以更容易地管理、扩展和维护代码。而ILRuntime作为一款基于C#的热更新框架&#xff0c;为Unity3D开发者提供了一种高效的热更新和组…...

ELK的搭建

ELK elk&#xff1a;elasticsearch logstatsh kibana统一日志收集系统 elasticsearch&#xff1a;分布式的全文索引引擎点非关系型数据库,存储所有的日志信息&#xff0c;主和从&#xff0c;最少需要2台 logstatsh&#xff1a;动态的从各种指定的数据源&#xff0c;获取数据…...

国产信创实践(国能磐石服务器操作系统CEOS +东方通TongHttpServer)

替换介绍&#xff1a; 国能磐石服务器操作系统CEOS 对标 Linux 服务器操作系统&#xff08;Ubuntu, CentOS&#xff09; 东方通TongHttpServer 对标 Nginx 负载均衡Web服务器 第一步&#xff1a; 服务器安装CEOS映像文件&#xff0c;可直接安装&#xff0c;本文采用使用VMware …...

C#里使用libxl读取EXCEL文件里的图片并保存出来

有时候需要读取EXCEL里的图片文件, 因为很多用户喜欢使用图片保存在EXCEL里,比如用户保存一些现场整改的图片。 如果需要把这些图片抽取出来,再保存到系统里,就需要读取这些图片数据,生成合适的文件再保存。 在libxl里也提供了这样的方法, 如下: var picType = boo…...

【开源免费】基于SpringBoot+Vue.JS企业级工位管理系统(JAVA毕业设计)

本文项目编号 T 127 &#xff0c;文末自助获取源码 \color{red}{T127&#xff0c;文末自助获取源码} T127&#xff0c;文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...

美国大学的计算机科学专业排名

美国的计算机科学专业在全球范围内享有盛誉&#xff0c;许多大学在该领域具有卓越的教学和研究实力。以下是根据最新的排名和信息整理的美国计算机科学专业顶尖大学列表&#xff1a; 2025年 U.S. News 美国本科计算机科学专业排名&#xff1a; 斯坦福大学&#xff08;Stanfor…...

机器学习实战——决策树:从原理到应用的深度解析

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​​​ ​​​ ​​ 决策树&#xff08;Decision Tree&#xff09;是一种简单而直观的分类与回归模型&#xff0c;在机器学习中广泛应用。它的…...

开源生成式物理引擎Genesis,可模拟世界万物

这是生成大模型时代 —— 它们能生成文本、图像、音频、视频、3D 对象…… 而如果将所有这些组合到一起&#xff0c;我们可能会得到一个世界&#xff01; 现在&#xff0c;不管是 LeCun 正在探索的世界模型&#xff0c;还是李飞飞想要攻克的空间智能&#xff0c;又或是其他研究…...

kubernetes第七天

1.影响pod调度的因素 nodeName 节点名 resources 资源限制 hostNetwork 宿主机网络 污点 污点容忍 Pod亲和性 Pod反亲和性 节点亲和性 2.污点 通常是作用于worker节点上&#xff0c;其可以影响pod的调度 语法&#xff1a;key[value]:effect effect:[ɪˈfek…...

RK3588上CPU和GPU算力以及opencv resize的性能对比测试

RK3588上CPU和GPU算力以及opencv resize的性能对比测试 一.背景二.小结三.相关链接四.操作步骤1.环境搭建A.安装依赖B.设置GPU为高性能模式C.获取GPU信息D.获取CPU信息 2.调用OpenCL SDK获取GPU信息3.使用OpenCL API计算矩阵乘4.使用clpeak测试GPU的性能5.使用OpenBLAS测试CPU的…...

基于Centos 7系统的安全加固方案

创作不易&#xff0c;麻烦点个免费的赞和关注吧&#xff01; 声明&#xff01; 免责声明&#xff1a;本教程作者及相关参与人员对于任何直接或间接使用本教程内容而导致的任何形式的损失或损害&#xff0c;包括但不限于数据丢失、系统损坏、个人隐私泄露或经济损失等&#xf…...

IT行业的发展趋势

一、引言 IT&#xff08;信息技术&#xff09;行业自诞生以来&#xff0c;就以惊人的速度发展&#xff0c;不断改变着我们的生活、工作和社会结构。如今&#xff0c;随着技术的持续创新、市场需求的演变以及全球经济格局的变化&#xff0c;IT行业正迈向新的发展阶段&#xff0…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...