当前位置: 首页 > news >正文

python 代码使用 DeepXDE 库实现了一个求解二维非线性偏微分方程(PDE)的功能

import deepxde as dde
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf# 设置时空计算域
Lx = 1  # x 范围从 0 到 1
Ly = 1  # y 范围从 0 到 1
Lt = 0.05  # t 范围从 0 到 0.05
geom = dde.geometry.Rectangle([0, 0], [Lx, Ly])  # 空间域
timedomain = dde.geometry.TimeDomain(0, Lt)  # 时间域
geomtime = dde.geometry.GeometryXTime(geom, timedomain)# 设置 PDE 方程
def pde(x, y):u = y[:, 0:1]  # 提取 u(x, y, t)u_x = dde.grad.jacobian(y, x, i=0, j=0)  # u 对 x 的一阶导数u_y = dde.grad.jacobian(y, x, i=0, j=1)  # u 对 y 的一阶导数u_t = dde.grad.jacobian(y, x, i=0, j=2)  # u 对 t 的一阶导数# 计算 u 对 x 和 y 的梯度grad_u = tf.concat([u_x, u_y], axis=1)  # 使用 TensorFlow 的 concat 函数拼接张量# 计算 (u^2 - u + 1) * 梯度项term = u ** 2 - u + 1  # 计算 (u^2 - u + 1)A = term * grad_u  # 乘以梯度# 计算散度:对 (A) 进行求导,即计算 (A_x + A_y)A_x = dde.grad.jacobian(A, x, i=0, j=0)  # A 对 x 的导数A_y = dde.grad.jacobian(A, x, i=0, j=1)  # A 对 y 的导数# 散度 = A_x + A_ydiv_A = A_x + A_y# 返回 PDE 方程 u_t - div((u^2 - u + 1) * grad(u)) = 0return u_t - div_A# 边界条件:u = 0,在边界上
def boundary(x, on_boundary):return on_boundarybc = dde.icbc.DirichletBC(geomtime, lambda x: 0, boundary, component=0)# 初始条件:u = sin(pi * x) * sin(pi * y)
def ic_func(x):return np.sin(np.pi * x[:, 0:1]) * np.sin(np.pi * x[:, 1:2])ic = dde.icbc.IC(geomtime, ic_func, lambda x, on_initial: on_initial, component=0)# 创建数据对象
data = dde.data.TimePDE(geomtime,pde,[bc, ic],num_domain=10000,  # 训练样本数量num_boundary=8000,  # 边界上的训练样本数量num_initial=5000,  # 初始条件上的训练样本数量num_test=10000,  # 测试样本数量
)# 设置神经网络架构
layer_size = [3] + [50] * 3 + [1]  # 输入层(3维:x, y, t),4个隐藏层,每层80个神经元,输出层(u)
activation = "tanh"  # 激活函数
initializer = "Glorot uniform"  # 权重初始化方法net = dde.nn.FNN(layer_size, activation, initializer)# 创建模型并训练
model = dde.Model(data, net)
model.compile("adam", lr=1e-3)  # 使用 Adam 优化器,学习率为 1e-3
losshistory, train_state = model.train(iterations=3000, display_every=200)# 保存训练历史和状态
dde.saveplot(losshistory, train_state, issave=False, isplot=True)# 可视化结果,绘制 t=0.05 时刻的 u(x, y)
xx, yy = np.meshgrid(np.linspace(0, 1, 28), np.linspace(0, 1, 28))
xy = np.vstack((xx.ravel(), yy.ravel())).T
t = np.ones((xy.shape[0], 1)) * 0.05  # 设置 t=0.05
xy_t = np.hstack((xy, t))  # 合并 x, y, tu_pred = model.predict(xy_t)  # 预测 u(x, y, t) 在 t=0.05 时的值
u_pred = u_pred.reshape(xx.shape)  # 重塑为网格形状# 筛选 u >= 0
u_pred = np.maximum(u_pred, 0)# 绘制 u(x, y) 的 3D 图
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(xx, yy, u_pred, cmap="viridis")
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('u(x, y, t=0.05)')
ax.set_title('u(x, y, t=0.05)')plt.show()

这段代码使用 DeepXDE 库实现了一个求解二维非线性偏微分方程(PDE)的功能。以下是对代码功能的详细解释:

  1. 设置时空计算域

    • 定义了空间范围 LxLy 分别为 1,时间范围 Lt 为 0.05。
    • 创建了空间域 geom(一个矩形)、时间域 timedomain 以及时空域 geomtime
  2. 设置 PDE 方程

    • 定义了一个函数 pde 来描述 PDE 方程。
    • 计算了函数 uxyt 的一阶导数。
    • 计算了 u 的梯度和 (u^2 - u + 1) * 梯度 项。
    • 计算了上述项的散度,并构建了 PDE 方程 u_t - div((u^2 - u + 1) * grad(u)) = 0
  3. 定义边界条件和初始条件

    • 边界条件:定义了一个函数 boundary 来判断点是否在边界上,并设置边界条件为 u = 0
    • 初始条件:定义了一个函数 ic_func 来描述初始条件 u = sin(pi * x) * sin(pi * y)
  4. 创建数据对象

    • 使用 dde.data.TimePDE 创建了一个数据对象 data,包含了 PDE 方程、边界条件和初始条件。
    • 定义了训练样本、边界样本、初始条件样本和测试样本的数量。
  5. 设置神经网络架构

    • 定义了神经网络的层结构,包括输入层(3 维:xyt)、4 个隐藏层(每层 50 个神经元)和输出层(1 维:u)。
    • 选择了激活函数 tanh 和权重初始化方法 Glorot uniform
  6. 创建模型并训练

    • 使用 dde.Model 创建了一个模型,将数据对象和神经网络传入。
    • 使用 Adam 优化器,学习率为 1e-3 对模型进行编译。
    • 训练模型,迭代 3000 次,并每 200 次迭代显示一次训练信息。
  7. 保存和可视化结果

    • 使用 dde.saveplot 保存训练历史和状态,并绘制损失曲线。
    • t = 0.05 时刻,生成网格点 xxyy,并将其与 t 合并为 xy_t
    • 使用训练好的模型预测 u(x, y, t)t = 0.05 时的值,并重塑为网格形状。
    • 筛选出 u >= 0 的值。
    • 绘制 u(x, y, t = 0.05) 的 3D 图。

综上所述,这段代码实现了使用深度学习方法求解二维非线性 PDE 的功能,并对结果进行了可视化展示。

相关文章:

python 代码使用 DeepXDE 库实现了一个求解二维非线性偏微分方程(PDE)的功能

import deepxde as dde import numpy as np import matplotlib.pyplot as plt import tensorflow as tf# 设置时空计算域 Lx 1 # x 范围从 0 到 1 Ly 1 # y 范围从 0 到 1 Lt 0.05 # t 范围从 0 到 0.05 geom dde.geometry.Rectangle([0, 0], [Lx, Ly]) # 空间域 timed…...

【Go】:深入解析 Go 1.24:新特性、改进与最佳实践

前言 Go 1.24 尚未发布。这些是正在进行中的发布说明。Go 1.24 预计将于 2025 年 2 月发布。本文将深入探讨 Go 1.24 中引入的各项更新,并通过具体示例展示这些变化如何影响日常开发工作,确保为读者提供详尽而有价值的参考。 新特性及改进综述 HTTP/2 …...

VUE3 一些常用的 npm 和 cnpm 命令,涵盖了修改源、清理缓存、修改 SSL 协议设置等内容。

以下是一些常用的 npm 和 cnpm 命令,涵盖了修改源、清理缓存、修改 SSL 协议设置等内容。 npm 常用命令 1. 修改 npm 源 更改为淘宝的 npm 镜像源(可以提高安装速度): bash复制代码 npm config set registry https://registry…...

【SpringBoot】@Value 没有注入预期的值

问题复现 在装配对象成员属性时,我们常常会使用 Autowired 来装配。但是,有时候我们也使用 Value 进行装配。不过这两种注解使用风格不同,使用 Autowired 一般都不会设置属性值,而 Value 必须指定一个字符串值,因为其…...

【STM32-学习笔记-6-】DMA

文章目录 DMAⅠ、DMA框图Ⅱ、DMA基本结构Ⅲ、不同外设的DMA请求Ⅳ、DMA函数Ⅴ、DMA_InitTypeDef结构体参数①、DMA_PeripheralBaseAddr②、DMA_PeripheralDataSize③、DMA_PeripheralInc④、DMA_MemoryBaseAddr⑤、DMA_MemoryDataSize⑥、DMA_MemoryInc⑦、DMA_DIR⑧、DMA_Buff…...

js实现一个可以自动重链的websocket客户端

class WebSocketClient {constructor(url, callback, options {}) {this.url url; // WebSocket 服务器地址this.options options; // 配置选项(例如重试间隔、最大重试次数等)this.retryInterval options.retryInterval || 1000; // 重试间隔&#…...

企业总部和分支通过GRE VPN互通

PC1可以ping通PC2 1、首先按照地址表配置ip地址 2、分别在AR1和AR3上配置nat 3、配置GRE a 创建tunnel接口,并选择tunnel协议为GRE,为隧道创建一个地址,用作互联 b 为隧道配置源地址或者源接口,这里选择源接口;再为…...

油猴支持阿里云自动登陆插件

遇到的以下问题,都已在脚本中解决: 获取到的元素赋值在页面显示,但是底层的value并没有改写,导致请求就是获取不到数据元素的加载时机不定,尤其是弱网情况下,只靠延迟还是有可能获取不到,且登陆…...

【2024年华为OD机试】(C卷,100分)- 字符串筛选排序 (Java JS PythonC/C++)

一、问题描述 题目描述 输入一个由N个大小写字母组成的字符串 按照ASCII码值从小到大进行排序 查找字符串中第K个最小ASCII码值的字母 (k > 1) 输出该字母所在字符串中的位置索引 (字符串的第一个位置索引为0) k如果大于字符串长度则输出最大ASCII码值的字母所在字符串…...

iOS - runtime总结

详细总结一下 Runtime 的核心内容: 1. 消息发送机制 // 消息发送的基本流程 id objc_msgSend(id self, SEL _cmd, ...) {// 1. 获取 isaClass cls object_getClass(self);// 2. 查找缓存IMP imp cache_getImp(cls, _cmd);if (imp) return imp(self, _cmd, ...);…...

第33 章 - ES 实战篇 - MySQL 与 Elasticsearch 的一致性问题

思维导图 0. 前言 MySQL 与 Elasticsearch 一致性问题是老生常谈了。网上有太多关于这方面的文章了,但是千篇一律,看了跟没看没有太大区别。 在生产中,我们往往会通过 DTS 工具将 binlog 导入到 Kafka,再通过 Kafka 消费 binlog&…...

Artec Leo 3D扫描仪与Ray助力野生水生动物法医鉴定【沪敖3D】

挑战:捕获大型水生哺乳动物(如鲸鱼)的数据,搭建全彩3D模型,用于水生野生动物的法医鉴定、研究和保护工作。 解决方案:Artec Eva、Artec Space Spider、Artec Leo、Artec Ray、Artec Studio、CT scans 效果&…...

PythonQT5打包exe线程使用

打包: pyinstaller --noconsole --onefile test.py–noconsole 表示不需要打开命令行 修改:test.spec 一般项目里面需要用的资源文件,比如lib、png、exe等。 需要单独修改spec文件 pathex[.],binaries[(D:/test.png, .),(D:/simsun.ttc, .…...

【Powershell】Windows大法powershell好(二)

PowerShell基础(二) 声明:该笔记为up主 泷羽的课程笔记,本节链接指路。 警告:本教程仅作学习用途,若有用于非法行为的,概不负责。 1. powershell 执行外部命令 powershell也可以执行一些外部的…...

前端学习-环境this对象以及回调函数(二十七)

目录 前言 目标 环境对象 作用 环境对象this是什么? 判断this指向的粗略规则是什么? 回调函数 目标 常见的使用场景 综合案例:Tab任务栏切换 总结 前言 男儿何不带吴钩,收取关山五十州 目标 能够分析判断函数运行在不…...

Element-plus、Element-ui之Tree 树形控件回显Bug问题。

需求&#xff1a;提交时&#xff0c;需要把选中状态和半选中状态 的数据id提交。如图所示&#xff1a; 数据回显时&#xff0c;会出现代码如下&#xff1a; <template><el-tree ref"treeRef" :data"tree" show-checkbox node-key"id" …...

互联网全景消息(10)之Kafka深度剖析(中)

一、深入应用 1.1 SpringBoot集成Kafka 引入对应的依赖。 <dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupI…...

Oracle Dataguard(主库为双节点集群)配置详解(5):将主库复制到备库并启动同步

Oracle Dataguard&#xff08;主库为双节点集群&#xff09;配置详解&#xff08;5&#xff09;&#xff1a;将主库复制到备库并启动同步 目录 Oracle Dataguard&#xff08;主库为双节点集群&#xff09;配置详解&#xff08;5&#xff09;&#xff1a;将主库复制到备库并启动…...

pytorch小记(一):pytorch矩阵乘法:torch.matmul(x, y)

pytorch小记&#xff08;一&#xff09;&#xff1a;pytorch矩阵乘法&#xff1a;torch.matmul&#xff08;x, y&#xff09;/ x y 代码代码 1&#xff1a;torch.matmul(x, y)输入张量&#xff1a;计算逻辑&#xff1a;输出结果&#xff1a; 代码 2&#xff1a;y y.view(4,1)…...

PyTorch环境配置常见报错的解决办法

目标 小白在最基础的环境配置里一般都会出现许多问题。 这里把一些常见的问题分享出来。希望可以节省大家一些时间。 最终目标是可以在cmd虚拟环境里进入jupyter notebook&#xff0c;new的时候有对应的环境&#xff0c;并且可以跑通所有的import code。 第一步&#xff1a;…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时&#xff0c;拉取并启动容器后&#xff0c;有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致&#xff0c;包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因&#xff0c;并提供解决方案。 一、确认MySQL容器的运行状态 …...