pytorch小记(一):pytorch矩阵乘法:torch.matmul(x, y)
pytorch小记(一):pytorch矩阵乘法:torch.matmul(x, y)/ x @ y
- 代码
- 代码 1:`torch.matmul(x, y)`
- 输入张量:
- 计算逻辑:
- 输出结果:
- 代码 2:`y = y.view(4,1)` 再 `torch.matmul(x, y)`
- 输入张量:
- 计算逻辑:
- 输出结果:
- 总结:两种情况的区别
代码
x = torch.tensor([[1,2,3,4], [5,6,7,8]])
y = torch.tensor([2, 3, 1, 0]) # y.shape == (4)
print(torch.matmul(x, y))
print(x @ y)
>>>
tensor([11, 35])
tensor([11, 35])
x = torch.tensor([[1,2,3,4], [5,6,7,8]])
y = torch.tensor([2, 3, 1, 0]) # y.shape == (4)
y = y.view(4,1) # y.shape == (4, 1)
'''
tensor([[2],[3],[1],[0]])
'''
print(torch.matmul(x, y))
print(x @ y)
>>>
tensor([[11],[35]])
tensor([[11],[35]])
在这段代码中,torch.matmul(x, y) 或者x @ y计算的是矩阵乘法或张量乘法。我们分两种情况详细分析:
代码 1:torch.matmul(x, y)
输入张量:
x是一个 2D 张量,形状为(2, 4):tensor([[1, 2, 3, 4],[5, 6, 7, 8]])y是一个 1D 张量,形状为(4,):tensor([2, 3, 1, 0])
计算逻辑:
在 PyTorch 中,如果 matmul 的一个输入是 2D 张量,另一个是 1D 张量,计算规则是:
- 将 1D 张量
y当作列向量(4, 1),与矩阵x进行矩阵乘法。 - 结果是一个 1D 张量,形状为
(2,)。
矩阵乘法公式:
result [ i ] = ∑ j x [ i , j ] ⋅ y [ j ] \text{result}[i] = \sum_j x[i, j] \cdot y[j] result[i]=j∑x[i,j]⋅y[j]
具体计算步骤:
- 对第一行
[1, 2, 3, 4]:
( 1 ⋅ 2 ) + ( 2 ⋅ 3 ) + ( 3 ⋅ 1 ) + ( 4 ⋅ 0 ) = 2 + 6 + 3 + 0 = 11 (1 \cdot 2) + (2 \cdot 3) + (3 \cdot 1) + (4 \cdot 0) = 2 + 6 + 3 + 0 = 11 (1⋅2)+(2⋅3)+(3⋅1)+(4⋅0)=2+6+3+0=11 - 对第二行
[5, 6, 7, 8]:
( 5 ⋅ 2 ) + ( 6 ⋅ 3 ) + ( 7 ⋅ 1 ) + ( 8 ⋅ 0 ) = 10 + 18 + 7 + 0 = 35 (5 \cdot 2) + (6 \cdot 3) + (7 \cdot 1) + (8 \cdot 0) = 10 + 18 + 7 + 0 = 35 (5⋅2)+(6⋅3)+(7⋅1)+(8⋅0)=10+18+7+0=35
输出结果:
torch.matmul(x, y)
# tensor([11, 35])
代码 2:y = y.view(4,1) 再 torch.matmul(x, y)
输入张量:
x是同一个 2D 张量,形状为(2, 4)。y被重塑为 2D 张量,形状为(4, 1):tensor([[2],[3],[1],[0]])
计算逻辑:
在这种情况下,matmul 执行的是 矩阵乘法,两个输入的形状为 (2, 4) 和 (4, 1):
- 矩阵乘法的规则是:前一个矩阵的列数必须等于后一个矩阵的行数。
- 结果张量的形状是
(2, 1)。
矩阵乘法公式:
result [ i , k ] = ∑ j x [ i , j ] ⋅ y [ j , k ] \text{result}[i, k] = \sum_j x[i, j] \cdot y[j, k] result[i,k]=j∑x[i,j]⋅y[j,k]
具体计算步骤:
- 对第一行
[1, 2, 3, 4]和列向量[[2], [3], [1], [0]]:
( 1 ⋅ 2 ) + ( 2 ⋅ 3 ) + ( 3 ⋅ 1 ) + ( 4 ⋅ 0 ) = 2 + 6 + 3 + 0 = 11 (1 \cdot 2) + (2 \cdot 3) + (3 \cdot 1) + (4 \cdot 0) = 2 + 6 + 3 + 0 = 11 (1⋅2)+(2⋅3)+(3⋅1)+(4⋅0)=2+6+3+0=11 - 对第二行
[5, 6, 7, 8]和列向量[[2], [3], [1], [0]]:
( 5 ⋅ 2 ) + ( 6 ⋅ 3 ) + ( 7 ⋅ 1 ) + ( 8 ⋅ 0 ) = 10 + 18 + 7 + 0 = 35 (5 \cdot 2) + (6 \cdot 3) + (7 \cdot 1) + (8 \cdot 0) = 10 + 18 + 7 + 0 = 35 (5⋅2)+(6⋅3)+(7⋅1)+(8⋅0)=10+18+7+0=35
输出结果:
torch.matmul(x, y)
# tensor([[11],
# [35]])
总结:两种情况的区别
-
y是 1D 张量:torch.matmul(x, y)返回一个 1D 张量,形状为(2,)。- 相当于将
y当作列向量,与矩阵x做矩阵乘法。
-
y是 2D 张量:torch.matmul(x, y)返回一个 2D 张量,形状为(2, 1)。- 矩阵乘法严格遵守二维矩阵的维度规则。
两者的结果数值相同,但形状不同,主要是因为输入张量的维度不同,导致输出的维度也发生了变化。
相关文章:
pytorch小记(一):pytorch矩阵乘法:torch.matmul(x, y)
pytorch小记(一):pytorch矩阵乘法:torch.matmul(x, y)/ x y 代码代码 1:torch.matmul(x, y)输入张量:计算逻辑:输出结果: 代码 2:y y.view(4,1)…...
PyTorch环境配置常见报错的解决办法
目标 小白在最基础的环境配置里一般都会出现许多问题。 这里把一些常见的问题分享出来。希望可以节省大家一些时间。 最终目标是可以在cmd虚拟环境里进入jupyter notebook,new的时候有对应的环境,并且可以跑通所有的import code。 第一步:…...
罗永浩再创业,这次盯上了 AI?
罗永浩,1972年7月9日生于中国延边朝鲜族自治州的一个军人家庭,是一名朝鲜族人;早年在新东方授课,2004年当选 “网络十大红人” ;2006年8月1日,罗永浩创办牛博网;2008年5月,罗永浩注册…...
VUE3 provide 和 inject,跨越多层级组件传递数据
provide 和 inject 是 Vue 3 提供的 API,主要用于实现祖先组件与后代组件之间的依赖注入。它们可以让你在组件树中,跨越多层组件传递数据,而不需要通过 props 或事件的方式逐层传递。这个机制主要用于状态共享、插件系统或某些跨层级的功能。…...
git打补丁
1、应用场景 跨仓库升级 开发项目B使用的是开源项目A。开源项目A发现漏洞,作者进行了修复,我们可以通过使用git补丁的方式,将作者修改的内容复制到我 们的项目B中。 2、TortoiseGit方式 源仓库 格式化补丁 根据提交数量,生成…...
机械燃油车知识图谱、知识大纲、知识结构(持续更新...)
一、发动机 曲柄连杆机构 配气机构 点火系统 起动系统 燃油供给系统 润滑系统 冷却系统 二、底盘 (一)传动系统 1、离合器 2、变速器 3、万向传动装置 4、驱动桥 (二)行驶系统 1、车架 2、车桥 3、悬架 4、车轮 &a…...
Vue3学习总结
一、Vue 3 基础搭建与核心语法 1.创建 Vue 3 应用 在项目的入口文件 main.js 中,通过以下代码创建 Vue 3 应用实例: import { createApp } from vue; import App from ./App.vue;const app createApp(App); app.mount(#app); 这几行代码的作用是引入…...
Type-C双屏显示器方案
在数字化时代,高效的信息处理和视觉体验已成为我们日常生活和工作的关键需求。随着科技的进步,一款结合了便携性和高效视觉输出的设备——双屏便携屏,逐渐崭露头角,成为追求高效工作和娱乐体验人群的新宠。本文将深入探讨双屏便携…...
【读书与思考】焦虑与内耗
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】 导言 今天一个朋友和我说,最近比较焦虑和内耗,无心工作和学习,我问他你焦虑内耗的时候,时间主要花在哪了,他告诉我说主要花在看有关移…...
基于python的网页表格数据下载--转excel
基于 Python 的网页表格数据爬取与下载:以维基百科为例 目录 基于 Python 的网页表格数据爬取与下载:以维基百科为例1. 背景介绍2. 工具与环境3. 操作步骤1. 获取网页内容2. 定位表格元素3. 表格变身 Pandas DataFrame4. 检查数据,收工!5. 进阶玩法与优化6. 完整代码4. 结果…...
Vue.js开发入门:从零开始搭建你的第一个项目
前言 嘿,小伙伴们!今天咱们来聊聊 Vue.js,一个超火的前端框架。如果你是编程小白,别怕,跟着我一步步来,保证你能轻松上手,搭建起属于自己的第一个 Vue 项目。Vue.js 可能听起来有点高大上&#…...
LS1046+XILINX XDMA PCIE调通
欢迎点赞收藏,欢迎私下讨论技术,分享技术 硬件平台 :NXP LS1046 XILINX FPGA 软件平台:LINUX 4.19.68 buildroot LS1046 PEX3 接 XILINX FPGA,linux使用designware的PCI主控制器。下载XILINX DMA驱动,解…...
HarmonyOS:@LocalBuilder装饰器: 维持组件父子关系
一、前言 当开发者使用Builder做引用数据传递时,会考虑组件的父子关系,使用了bind(this)之后,组件的父子关系和状态管理的父子关系并不一致。为了解决组件的父子关系和状态管理的父子关系保持一致的问题,引入LocalBuilder装饰器。…...
YOLOv10-1.1部分代码阅读笔记-downloads.py
downloads.py ultralytics\utils\downloads.py 目录 downloads.py 1.所需的库和模块 2.def is_url(url, checkFalse): 3.def delete_dsstore(path, files_to_delete(".DS_Store", "__MACOSX")): 4.def zip_directory(directory, compressTrue, ex…...
计算机图形学【绘制立方体和正六边形】
工具介绍 OpenGL:一个跨语言的图形API,用于渲染2D和3D图形。它提供了绘制图形所需的底层功能。 GLUT:OpenGL的一个工具库,简化了窗口创建、输入处理和其他与图形环境相关的任务。 使用的函数 1. glClear(GL_COLOR_BUFFER_BIT |…...
基于django中医药数据可视化平台(源码+lw+部署文档+讲解),源码可白嫖!
摘要 时代在飞速进步,每个行业都在努力发展现在先进技术,通过这些先进的技术来提高自己的水平和优势,中医药管理平台当然不能排除在外。中医药数据可视化平台是在实际应用和软件工程的开发原理之上,运用Python语言、ECharts技术、…...
kafka消费堆积问题探索
背景 我们的商城项目用PHP写的,原本写日志方案用的是PHP的方案,但是,这个方案导致资源消耗一直降不下来,使用了20个CPU。后面考虑使用通过kafka的方案写日志,商城中把产生的日志丢到kafka中,在以go写的项目…...
Vue.js 使用插槽(Slots)优化组件结构
Vue.js 使用插槽(Slots)优化组件结构 今天我们聊聊 Vue.js 的一个超实用功能——插槽(Slots)。插槽是 Vue 组件开发中的神器,用好它,你可以让组件变得更灵活、更可复用,还能写出优雅的代码结构…...
Broker如何进行定时心跳发送和故障感知
1.前言 此文章是在儒猿课程中的学习笔记,感兴趣的想看原来的课程可以去咨询儒猿课堂《从0开始带你成为RocketMQ高手》,我本人觉得这个作者还是不错,都是从场景来进行分析,感觉还是挺适合我这种小白的。这块主要都是我自己的学习笔…...
网络安全设备主要有什么
网络安全设备指的肯定是硬件设备了,国内卖安全硬件的没几家,天融信,启明星辰,绿盟,深信服,就这四家卖的比较齐全吧,上它们官网看一下,就知道市面上主要的网络安全设备有哪些了。分类…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
