接上一主题,实现QtByteArray任意进制字符串转为十进制数
函数:
/// <summary>/// n进制字符串转为十进制数,snDefine的长度最小为二进制数。/// 例子:/// _pn(_Math::strNToInt(_t("1010"), _t("01")));/// _pn(_Math::strNToInt(_t("-1010"), _t("0123456789")));/// _pn(_Math::strNToInt(_t("天空海阔"), _t("海阔天空"))); //4进制定义为 "海阔天空" /// 输出:/// 10/// -1010/// 177/// </summary>/// <param name="sNumberr"></param>/// <param name="snDefine"></param>/// <returns></returns>/// 创建时间: 2025-01-12 最后一次修改时间:2025-01-12 static __int64 strNToInt(const _char* sNumber, const _char* snDefine);
实现:
__int64 _Math::strNToInt(const _char* sNumber, const _char* snDefine)
{__int64 iResult = 0;size_t nLen = _Math::strLen_t<_char>(sNumber);size_t nBaseLen = _Math::strLen_t<_char>(snDefine);lassert(nLen > 0);lassert(nBaseLen >= 2); //最小2进制for (int i = nLen - 1; i >= 0; --i) {_char ch = sNumber[i];//n为进制定义中的序号值,例: 定义:0123456789 中的 0 的值就是 0// 定义:abc 中的 a 的值也是 0int n = _Math::strChr_t<_char>(snDefine, ch); if (n != -1) {iResult += n * _Math::pow_uint(nBaseLen, nLen - i - 1);}else {break;}}if (sNumber[0] == '-')return -iResult;elsereturn iResult;
}
strNToInt例子:
int main(int argc, char *argv[])
{QCoreApplication a(argc, argv);_pn(_Math::strNToInt(_t("1010"), _t("01")));_pn(_Math::strNToInt(_t("-1010"), _t("0123456789")));_pn(_Math::strNToInt(_t("天空海阔"), _t("海阔天空"))); //4进制定义为 "海阔天空" _pn(_Math::strNToInt(_t("1F"), _t("0123456789ABCDEF")));return a.exec();
}
输出结果:

把海阔天空定义为进制是不是很有意思:
海 0
阔 1
天 2
空 3
相关文章:
接上一主题,实现QtByteArray任意进制字符串转为十进制数
函数: /// <summary>/// n进制字符串转为十进制数,snDefine的长度最小为二进制数。/// 例子:/// _pn(_Math::strNToInt(_t("1010"), _t("01")));/// _pn(_Math::strNToInt(_t("-1010"), _t("0123…...
CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型
CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型 目录 CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现贝叶斯优化CNN-GRU融合多头注意力机制多变量回归预测ÿ…...
Java 如何传参xml调用接口获取数据
传参和返参的效果图如下: 传参: 返参: 代码实现: 1、最外层类 /*** 外层DATA类*/ XmlRootElement(name "DATA") public class PointsXmlData {private int rltFlag;private int failType;private String failMemo;p…...
uniapp 之 uni-forms校验提示【提交的字段[‘xxx‘]在数据库中并不存在】解决方案
目录 场景问题代码结果问题剖析解决方案 场景 uni-forms官方组件地址 使用uniapp官方提供的组件,某个表单需求,单位性质字段如果是高校,那么工作单位则是高校的下拉选择格式,单位性质如果是其他的类型,工作单位则是手动…...
excel VBA 基础教程
这里写目录标题 快捷键选择所有有内容的地方 调试VBA录制宏,打开VBA开发工具录制宏,相当于excel自动写代码(两个表格内容完全一致才可以) 查看宏代码保持含有宏程序的文件xlsm后缀(注意很容易有病毒)宏文件安全设置 使…...
基于异步IO的io_uring
基于异步IO的io_uring 1. io_uring的实现原理 io_uring使用了一种异步IO机制,它通过一对环形缓冲区(ring buffer)实现用户态于内核态之间的高效通信,用户只需将IO请求放入提交队列,当内核完成IO请求时,会将结果放入完成队列&…...
【江协STM32】10-2/3 MPU6050简介、软件I2C读写MPU6050
1. MPU6050简介 MPU6050是一个6轴姿态传感器,可以测量芯片自身X、Y、Z轴的加速度、角速度参数,通过数据融合,可进一步得到姿态角,常应用于平衡车、飞行器等需要检测自身姿态的场景3轴加速度计(Accelerometerÿ…...
仓颉笔记——写一个简易的web服务并用浏览器打开
创建一个web服务端,同时创建一个客户端去读取这个服务端。 也满足浏览器打开web的需求。 直接上代码。 import net.http.* import std.time.* import std.sync.* import std.log.LogLevel// 1. 构建 Server 实例 let server ServerBuilder().addr("127.0.0.1&…...
DolphinScheduler自身容错导致的服务器持续崩溃重大问题的排查与解决
01 问题复现 在DolphinScheduler中有如下一个Shell任务: current_timestamp() { date "%Y-%m-%d %H:%M:%S" }TIMESTAMP$(current_timestamp) echo $TIMESTAMP sleep 60 在DolphinScheduler将工作流执行策略设置为并行: 定时周期调度设置…...
ecmascript 标准+ 严格模式与常规模式 + flat-flatMap 应用
文章目录 ecmascript 历程严格模式与常规模式下的区别及注意事项严格模式下的属性删除Array.prototype.flat()和Array.prototype.flatMap() 实例应用 ecmascript 历程 变量声明要求 常规模式: 在常规模式下,使用var关键字声明变量时会出现变量提升现象。…...
基于ILI9341液晶屏+STM32U5单片的显示试验
试验要求: 1、通过串口,下发两个命令 STR和PIC; 2、STR模式: (1)串口输入什么,屏幕上显示什么 (2)如果屏幕满,自动下滚 (3)输入回车&a…...
最短路径算法
关注:算法思路,时间复杂度,适用情况(单源/多源,负边权/负边权回路) 复习弗雷德算法--基于动态规划--多源--负边权--时间复杂度O(v^3) int的最大值是0x7fffffff #include <iostream> using namesp…...
如何用 ESP32-CAM 做一个实时视频流服务器
文章目录 ESP32-CAM 概述ESP32-S 处理器内存Camera 模块MicroSD 卡槽天线板载 LED 和闪光灯其他数据手册和原理图ESP32-CAM 功耗 ESP32-CAM 引脚参考引脚排列GPIO 引脚哪些 GPIO 可以安全使用?GPIO 0 引脚MicroSD 卡引脚 ESP32-CAM 的烧录方式使用 ESP32-CAM-MB 编程…...
Centos7 解决Maven scope=system依赖jar包没有打包到启动jar包中的问题(OpenCV-4.10)
最近项目中遇到问题,OpenCV的Jar包在程序打包后,找不到相关的类,比如MAT,这个时候怀疑OpenCV_4.10的Jar没有和应用程序一起打包,后面排查到确实是没有打包进去,特此记录,便于日后查阅。 <!-- 加载lib目录下的opencv包 --> <dependency><groupId>org…...
iOS实际开发中使用Alamofire实现多文件上传(以个人相册为例)
引言 在移动应用中,图片上传是一个常见的功能,尤其是在个人中心或社交平台场景中,用户经常需要上传图片到服务器,用以展示个人风采或记录美好瞬间。然而,实现多图片上传的过程中,如何设计高效的上传逻辑并…...
如何将分割的mask转为为分割标签
将分割的mask转换为分割标签通常涉及将每个像素的类别标识(在mask中以不同的灰度值或颜色表示)转换为整数标签。这些标签通常用于机器学习或深度学习模型的训练、验证和测试阶段。 使用方式,控制台或者命令行使用以下命令: pyth…...
【动手学电机驱动】STM32-MBD(5)Simulink 模型开发之 PWM 输出
STM32-MBD(1)安装 Simulink STM32 硬件支持包 STM32-MBD(2)Simulink 模型部署入门 STM32-MBD(3)Simulink 状态机模型的部署 STM32-MBD(4)Simulink 状态机实现按键控制 STM32-MBD&…...
MySQL进阶突击系列(05)突击MVCC核心原理 | 左右护法ReadView视图和undoLog版本链强强联合
2024小结:在写作分享上,这里特别感谢CSDN社区提供平台,支持大家持续学习分享交流,共同进步。社区诚意满满的干货,让大家收获满满。 对我而言,珍惜每一篇投稿分享,每一篇内容字数大概6000字左右&…...
vue2日历组件
这个代码可以直接运行,未防止有组件库没安装,将组件库的代码,转成文字了 vue页面 <template><div class"about"><div style"height: 450px; width: 400px"><div style"height: 100%; overflo…...
【PyQt】多行纯文本框
[toc]qt多行纯文本框 QPlainTextEdit QPlainTextEdit 是可以多行的纯文本编辑框 文本浏览框 内置了一个** QTextDocument **类型的对象 ,存放文档。 1.信号:文本被修改 当文本框中的内容被键盘编辑,被点击就会发出 textChanged 信号&…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
