当前位置: 首页 > news >正文

EF Core一对一和多对多

目录

EF Core一对一

关系属性

关系配置

使用

EF Core多对多

关系属性

关系配置

使用


EF Core一对一

关系属性

必须显式的在其中一个实体类中声明一个外键属性,可以在Order建立Delivery,也可以在Delivery建立OrderId

class Order
{public long Id { get; set; }public string Name { get; set; }public string Address { get; set; }public Delivery Delivery { get; set; }
}class Delivery
{public long Id { get; set; }public string CompanyName { get; set; }public string Number {  get; set; }public Order Order { get; set; }public long OrderId { get; set; }
}

关系配置

 class OrderConfig : IEntityTypeConfiguration<Order>{public void Configure(EntityTypeBuilder<Order> builder){builder.ToTable("T_Orders");builder.HasOne(o => o.Delivery).WithOne(p => p.Order).HasForeignKey<Delivery>(p => p.OrderId);}}class DeliveryConfig : IEntityTypeConfiguration<Delivery>
{public void Configure(EntityTypeBuilder<Delivery> builder){builder.ToTable("T_Deliverys");}
}

使用

static async Task Main(string[] args)
{using (MyDbContext ctx = new MyDbContext()){Order o1 = new Order{Name="书",Address="中国"};Delivery d1 = new Delivery{CompanyName="顺丰",Number="SF25646",Order=o1};ctx.Deliverys.Add(d1);await ctx.SaveChangesAsync();}
}

EF Core多对多

EF Core5.0开始,才正式支持多对多

关系属性

class Student
{public int Id { get; set; }public string Name { get; set; }public List<Teacher> Teachers { get; set; } = new List<Teacher>();
}class Teacher
{public int Id { get; set; }public string Name { get; set; }public List<Student> Students { get; set; } = new List<Student>();
}

关系配置

class StudentConfig : IEntityTypeConfiguration<Student>
{public void Configure(EntityTypeBuilder<Student> builder){builder.ToTable("T_Students");builder.HasMany(o => o.Teachers).WithMany(t => t.Students).UsingEntity(j => j.ToTable("T_Student_Teachers"));}
}class TeacherConfig : IEntityTypeConfiguration<Teacher>
{public void Configure(EntityTypeBuilder<Teacher> builder){builder.ToTable("T_teachers");}
}

使用

class Program
{static async Task Main(string[] args){using (MyDbContext ctx = new MyDbContext()){//插入Student s1 = new Student { Name = "张三" };Student s2 = new Student { Name = "李四" };Student s3 = new Student { Name = "王五" };Teacher t1 = new Teacher { Name = "Tom" };Teacher t2 = new Teacher { Name = "Jerry" };Teacher t3 = new Teacher { Name = "Bob" };s1.Teachers.Add(t1);s1.Teachers.Add(t2);s2.Teachers.Add(t2);s2.Teachers.Add(t3);s3.Teachers.Add(t1);s3.Teachers.Add(t2);s3.Teachers.Add(t3);ctx.Students.Add(s1);ctx.Students.Add(s2);ctx.Students.Add(s3);await ctx.SaveChangesAsync();//查询var teachers = ctx.Teachers.Include(t => t.Students);foreach (var t in teachers){Console.WriteLine(t.Name);foreach (var s in t.Students){Console.WriteLine("\t" + s.Name);}}}}
}

相关文章:

EF Core一对一和多对多

目录 EF Core一对一 关系属性 关系配置 使用 EF Core多对多 关系属性 关系配置 使用 EF Core一对一 关系属性 必须显式的在其中一个实体类中声明一个外键属性&#xff0c;可以在Order建立Delivery&#xff0c;也可以在Delivery建立OrderId class Order {public long…...

记一次sealos部署k8s集群之delete了第一台master如何恢复

记一次sealos部署k8s集群之delete了第一台master如何恢复 一、背景描述 使用sealos部署了一套K8S集群 master信息:172.27.100.1、172.27.100.2、172.27.100.3 node信息:172.27.100.4、172.27.100.5 sealos安装在172.27.100.1节点,根目录下/root/.sealos/文件还在! [root…...

vue3+vite+ts集成第三方js

npm run dev可以正常运行和测试。但是npm run build会报错。 要实现引入静态js&#xff0c;避免使用全局变量报错。 1. HTML 引入第三方 JS 在你的 HTML 文件中&#xff0c;通过 <script> 标签引入一个本地第三方 JS 文件&#xff0c;例如&#xff1a; <script sr…...

android framework.jar 在应用中使用

在开发APP中&#xff0c;有时会使用系统提供的framework.jar 来替代 android.jar, 在gradle中配置如下&#xff1a; 放置framework.jar 依赖配置 3 优先级配置 gradle.projectsEvaluated {tasks.withType(JavaCompile) {Set<File> fileSet options.bootstrapClasspat…...

FFmpeg入门

在音视频处理领域&#xff0c;有一款神器级的工具横扫开发者圈&#xff0c;那就是 FFmpeg。它被誉为“音视频处理的瑞士军刀”&#xff0c;凭借强大的功能和开源的特性成为众多开发者和媒体从业者的首选。今天&#xff0c;我们就来聊聊 FFmpeg 的入门使用&#xff0c;带你轻松开…...

云平台一键部署【Video-Background-Removal】视频换背景,无任何限制,随意换

Video-Background-Removal 是一款革命性的视频背景替换工具&#xff0c;旨在让用户轻松实现视频背景的快速更换。无论你是专业创作者还是普通用户&#xff0c;这款软件都能让你在几秒钟内改变背景&#xff0c;完全消除限制&#xff0c;随心所欲&#xff0c;随时随地想换就换&am…...

量子计算:从薛定谔的猫到你的生活

文章背景 说到量子计算&#xff0c;不少人觉得它神秘又遥不可及。其实&#xff0c;它只是量子物理学的一个“应用小分支”。它的核心在于量子比特的“叠加”和“纠缠”&#xff0c;这些听上去像科幻小说的概念&#xff0c;却为计算世界开辟了一片全新的天地。如果经典计算是“…...

51单片机——I2C-EEPROM

I2C&#xff1a;总线标准或通信协议 EEPROM&#xff1a;AT24C02芯片 开发板板载了1个EEPROM模块&#xff0c;可实现IIC通信 1、EEPROM模块电路&#xff08;AT24C02&#xff09; 芯片的SCL和SDA管脚是连接在单片机的P2.1和P2.0上 2、I2C介绍 I2C&#xff08;Inter&#xff…...

R语言的语法糖

R语言的语法糖 引言 在编程语言中&#xff0c;所谓的“语法糖”是指那些使得程序员能够以更简洁、直观的方式书写代码的语法形式。R语言作为一种用于统计分析和数据可视化的编程语言&#xff0c;具有丰富的功能和灵活的语法。本文将深入探讨R语言中的语法糖&#xff0c;帮助读…...

【算法学习笔记】30:埃氏筛(Sieve of Eratosthenes)和线性筛(Linear Sieve)

测试题目&#xff1a;AcWing 868. 筛质数 埃氏筛&#xff08;Sieve of Eratosthenes&#xff09; 如果 i i i是素数&#xff0c;每次把 i i i的倍数都筛掉&#xff0c;存在重复筛选&#xff0c;时间复杂度 n ⋅ l o g ( l o g n ) n \cdot log(logn) n⋅log(logn)。 #includ…...

【AscendC】tiling方案设计不当引起的一个时隐时现的bug

在设计tiling方案时&#xff0c;通常会考虑到非对齐的场景&#xff0c;对输入数据进行补全操作从而使得非对齐场景也能正确的完成计算。但在某些算子的实现过程中&#xff0c;沿用上述操作却会造成数据的错误计算&#xff0c;且这种错误出现与否取决于随机生成的测试数据质量。…...

视频转码对画质有影响吗?视频融合平台EasyCVR支持哪些转码格式?

视频转码过程是将视频文件从一种编码格式转换为另一种格式的过程&#xff0c;这一过程在现代数字媒体中扮演着至关重要的角色。众所周知&#xff0c;视频转码不仅仅是简单的格式转换&#xff0c;它涉及多个关键参数的改变&#xff0c;例如视频编码格式、比特率、分辨率以及帧率…...

工业视觉2-相机选型

工业视觉2-相机选型 一、按芯片类型二、按传感器结构特征三、按扫描方式四、按分辨率大小五、按输出信号六、按输出色彩接口类型 这张图片对工业相机的分类方式进行了总结&#xff0c;具体如下&#xff1a; 一、按芯片类型 CCD相机&#xff1a;采用电荷耦合器件&#xff08;CC…...

基于SpringBoot+Vue的健身房管理系统

系统展示 用户前台界面 管理员后台界面 系统背景 随着现代生活节奏的加快&#xff0c;人们对健康的需求日益增强&#xff0c;健身房行业因此迎来了蓬勃的发展。然而&#xff0c;传统的健身房管理方式逐渐暴露出效率低下、会员信息管理混乱、课程安排不灵活等问题。为了解决这些…...

leetcode 面试经典 150 题:快乐数

链接快乐数题序号202题型数组解题方法哈希表难度简单熟练度✅✅✅✅ 题目 编写一个算法来判断一个数 n 是不是快乐数。 [快乐数] 定义为&#xff1a; 对于一个正整数&#xff0c;每一次将该数替换为它每个位置上的数字的平方和。 然后重复这个过程直到这个数变为 1&#xff0…...

Leetcode 279. 完全平方数 动态规划 完全背包问题

原题链接&#xff1a;Leetcode 279. 完全平方数 class Solution { public:int numSquares(int n) {vector<int> dp(n 1, 0);for (int i 1; i < n; i) {int tmp INT_MAX;for (int j 1; j * j < i; j) {tmp min(tmp, dp[i - j * j]);}dp[i] tmp 1;}return dp[…...

python学opencv|读取图像(三十三)阈值处理图像-限定像素

【1】引言 前序我们已经掌握分解图像的通道&#xff0c;设置各个通道的RGB值&#xff0c;相关文章包括且不限于&#xff1a; python学opencv|读取图像&#xff08;十四&#xff09;BGR图像和HSV图像通道拆分-CSDN博客 python学opencv|读取图像&#xff08;十五&#xff09;B…...

QT Quick QML 实例之椭圆投影,旋转

文章目录 一、前言二、演示三、部分代码与分析 QML 其它文章请点击这里: QT QUICK QML 学习笔记 国际站点 GitHub: https://github.com/chenchuhan 国内站点 Gitee : https://gitee.com/chuck_chee 一、前言 此 Demo 主要用于无人机吊舱视角的模拟&#xf…...

炸砖块游戏的最终图案

描述 小红正在玩一个“炸砖块”游戏,游戏的规则如下:初始有一个 n * m 的砖块矩阵。小红会炸 k 次,每次会向一个位置投炸弹,如果这个位置有一个砖块,则砖块消失,上方的砖块向下落。小红希望你画出最终砖块的图案。 输入描述 第一行输入三个正整数 n, m, k,代表矩阵的行…...

LLM的实验平台有哪些:快速搭建测试大语言模型

LLM的实验平台有哪些:快速搭建测试大语言模型 目录 LLM的实验平台有哪些:快速搭建测试大语言模型低代码平台工程观测平台本地应用平台在线编程竞技场性能排名代码质量评估开源框架Hugging Face是一个机器学习和数据科学平台及社区主要功能开源工具与库应用场景优势低代码平台…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

若依登录用户名和密码加密

/*** 获取公钥&#xff1a;前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

如何在Windows本机安装Python并确保与Python.NET兼容

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...