当前位置: 首页 > news >正文

Python AI教程之十五:监督学习之决策树(6)高级算法C5.0决策树算法介绍

C5.0决策树算法

C5 算法由 J. Ross Quinlan 创建,是 ID3 决策树方法的扩展。它通过根据信息增益(衡量通过按特定属性进行划分而实现的熵减少量)递归地划分数据来构建决策树。

对于分类问题,C5.0 方法是一种决策树算法。它构建规则集或决策树,这是对 C4.5 方法的改进。根据算法运行产生最大信息增益的字段来划分样本。该方法递归地根据产生最高信息增益的字段来划分由初始划分确定的每个子样本。重复此过程,直到满足停止要求。

C5.0算法

C5.0 是之前ID3和C4.5算法的增强版本,是一种用于机器学习分类的强大决策树方法。它由 Ross Quinlan 创建,通过基于输入特征构建决策树来预测分类结果。C5.0 使用自上而下的递归方法划分数据集,在每个节点上选择最佳特征。它考虑生成的子组的大小和质量,同时使用信息增益和增益比标准确定最佳分割。C5.0 中包含修剪机制,以防止过度拟合并提高对新数据的泛化能力。它还可以很好地管理分类变量、数字属性和缺失值。生成的决策树为分类任务提供了易于理解的指导方针,并且由于其精确性、适应性和管理复杂数据集的能力,已广泛应用于各个领域。

如何选择最佳分割?

选择最佳分割是 C5 算法中的关键阶段,因为它建立了决策树的结构并最终影响其功能。C5 算法使用各种指标来评估分割并确定哪种分割可带来最大的信息增益或熵减少。

一组数据的不确定性或不可预测性可以用熵来衡量。它表示数据中的杂质程度以及 C5 算法中类标签的混乱程度。当熵很大时,拆分可能是有利的,因为它表示数据非常混乱。

相反,信息增益衡量的是数据根据某个特征划分时熵的减少量。它衡量了该特征在多大程度上有助于将数据点划分为更同质的组。信息增益越大的特征信息量越大,可以成功降低数据不确定性。

C5 算法在评估每个特征的所有潜在分割后,确定信息增益最优化的分割。通过遵循此过程,可以确保从输入中提取最相关的信息,从而构建决策树。

以下是在 C5 算法中选择最佳分割的分步说明:

  • 确定数据集的整体熵:这为数据中的杂质提供了基线测量。
  • 确定每个属性每次划分的熵:计算根据属性的潜在值对数据集进行分割后每次划分的熵。
  • 计算每个属性的信息增益:取每个属性划分的平均熵,并从数据集的起始熵中减去该平均熵。此图显示了根据该特征划分数据产生的熵减少了多少。
  • 选择产生最多信息增益的特征:决策树的当前节点选择分裂此属性,因为它被认为是最具信息量的。

相关文章:

Python AI教程之十五:监督学习之决策树(6)高级算法C5.0决策树算法介绍

C5.0决策树算法 C5 算法由 J. Ross Quinlan 创建,是 ID3 决策树方法的扩展。它通过根据信息增益(衡量通过按特定属性进行划分而实现的熵减少量)递归地划分数据来构建决策树。 对于分类问题,C5.0 方法是一种决策树算法。它构建规则集或决策树,这是对 C4.5 方法的改进。根…...

MOS管为什么会有夹断,夹断后为什么会有电流?该电流为什么是恒定的?

以下是对MOS管MOS管为什么会有夹断,夹断后为什么还会有电流?该电流为什么是恒定的?的一些心得体会。 1. MOS管为什么会有夹断? 可以认为D极加压使得D极的耗尽层增大(原因是N极接正极,P极接负极,电子被吸引…...

网络安全-RSA非对称加密算法、数字签名

数字签名非常普遍: 了解数字签名前先了解一下SHA-1摘要,RSA非对称加密算法。然后再了解数字签名。 SHA-1 SHA-1(secure hash Algorithm )是一种 数据加密算法。该算法的思想是接收一段明文,然后以一种不可逆的方式将…...

【AI日记】25.01.13

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】 AI kaggle 比赛:Forecasting Sticker Sales 读书 书名:罗素论幸福 律己 AI: 8 小时,良作息:1:00-9:00, 良短视频&…...

Mysql--运维篇--空间管理(表空间,索引空间,临时表空间,二进制日志,数据归档等)

MySQL的空间管理是指对数据库存储资源的管理和优化。确保数据库能够高效地使用磁盘空间、内存和其他系统资源。良好的空间管理不仅有助于提高数据库的性能,还能减少存储成本并防止因磁盘空间不足导致的服务中断。MySQL的空间管理涉及多个方面,包括表空间…...

JVM面试相关

JVM组成 什么是程序计数器 详细介绍Java堆 什么是虚拟机栈 能不能解释一下方法区? 直接内存相关 类加载器 什么是类加载器,类加载器有哪些 什么是双亲委派模型 类加载过程 垃圾回收 对象什么时候可以被垃圾回收器回收 JVM垃圾回收算法有那些 JVM的分代…...

【leetcode 13】哈希表 242.有效的字母异位词

原题链接 题解链接 一般哈希表都是用来快速判断一个元素是否出现集合里。 当我们想使用哈希法来解决问题的时候,我们一般会选择如下三种数据结构。 数组 set (集合) map(映射) 如果在做面试题目的时候遇到需要判断一个元素是否出现过的场景…...

Blazor开发复杂信息管理系统的优势

随着现代企业信息管理需求的不断提升,开发高效、易维护、可扩展的系统变得尤为重要。在这个过程中,Blazor作为一种新兴的Web开发框架,因其独特的优势,逐渐成为开发复杂信息管理系统的首选技术之一。本文将结合Blazor在开发复杂信息…...

ue5 1.平A,两段连击蒙太奇。鼠标点一下,就放2段动画。2,动画混合即融合,边跑边挥剑,3,动画通知,动画到某一帧,把控制权交给蓝图。就执行蓝图节点

新建文件夹 创建一个蒙太奇MA_Melee 找到c_slow 调节一下速度 把D_slow拖上去 中间加一个片段 哎呀呀,写错了,我想写2 把这个标记拖过来,点击默认default 弄第二个片段 就会自己变成这个样子 把2这个标记拖到中间 鼠标左键&a…...

2025,AI走向何方?暴雨技术专家为您展望

过去一年中,人工智能技术飞速发展,在各行各业都收获了巨大进展。面对即将到来的2025年,暴雨技术研发团队的专家对AI领域的发展趋势进行了展望,让我们来看看未来一年,有哪些重要趋势值得关注。 迈向关键转折的一步 20…...

Threejs实现 区块链网络效应

大家好!我是 [数擎 AI],一位热爱探索新技术的前端开发者,在这里分享前端和 Web3D、AI 技术的干货与实战经验。如果你对技术有热情,欢迎关注我的文章,我们一起成长、进步! 开发领域:前端开发 | A…...

宁德时代C++后端开发面试题及参考答案

请阐述面向对象的三大特性。 面向对象编程有三大特性,分别是封装、继承和多态。 封装是指将数据和操作数据的方法绑定在一起,对数据的访问和操作进行限制。这样做的好处是可以隐藏对象的内部细节,只暴露必要的接口给外部。例如,我们可以把一个汽车类的内部引擎状态、速度等…...

【三维数域】三维数据调度-负载均衡和资源优化

在处理大规模三维数据时,负载均衡和资源优化是确保系统高效运行、提供流畅用户体验的关键。这两者不仅影响到系统的性能和稳定性,还直接决定了用户交互的质量。以下是关于如何在三维数据调度中实现有效的负载均衡和资源优化的详细探讨。 一、负载均衡 负…...

Linux服务器网络丢包场景及解决办法

一、Linux网络丢包概述 在数字化浪潮席卷的当下,网络已然成为我们生活、工作与娱乐不可或缺的基础设施,如同空气般,无孔不入地渗透到各个角落。对于 Linux 系统的用户而言,网络丢包问题却宛如挥之不去的 “噩梦”,频繁…...

【信息系统项目管理师】高分论文:论信息系统项目的采购管理(数据中台项目)

更多内容请见: 备考信息系统项目管理师-专栏介绍和目录 文章目录 1、规划采购管理。2、实施采购3、控制采购2022年3月,我以项目经理的身份参加了xx银行xx省分行的数据中台项目。该项目历时10个月,项目经费500万。通过该项目,我们搭建了数据中台,实现了实时的、灵活可配的数…...

AI语音机器人大模型是什么?

AI语音机器人的大模型通常是指具有庞大参数规模和复杂结构的深度学习模型,这些模型能够处理大量数据并从中学习复杂的模式和关系,从而在语音识别、自然语言处理、语音合成等任务上表现出色。以下是AI语音机器人中大模型的具体介绍: 1.大模型…...

极客说|Azure AI Agent Service 结合 AutoGen/Semantic Kernel 构建多智能体解决⽅案

作者:卢建晖 - 微软高级云技术布道师 「极客说」 是一档专注 AI 时代开发者分享的专栏,我们邀请来自微软以及技术社区专家,带来最前沿的技术干货与实践经验。在这里,您将看到深度教程、最佳实践和创新解决方案。关注「极客说」&am…...

SparrowRTOS系列:链表版本内核

前言 Sparrow RTOS是笔者之前写的一个极简性RTOS,初代版本只有400行,后面笔者又添加了消息队列、信号量、互斥锁三种IPC机制,使之成为一个较完整、堪用的内核,初代版本以简洁为主,使用数组和表作为任务挂载的抽象数据…...

Elasticsearch—索引库操作(增删查改)

Elasticsearch中Index就相当于MySQL中的数据库表 Mapping映射就类似表的结构。 因此我们想要向Elasticsearch中存储数据,必须先创建Index和Mapping 1. Mapping映射属性 Mapping是对索引库中文档的约束,常见的Mapping属性包括: type:字段数据类…...

RabbitMQ高级篇

目录 确保发送者的可靠 为什么需要确保发送者的可靠性 RabbitMQ 的发送者重连机制配置 springAMQP实现发送者确认 MQ的可靠性 为什么需要实现MQ的可靠性? 数据持久化 Lazy Queue 核心思想 总结RabbitMQ 如何保证消息的可靠性 持久化 Lazy Queue 消息…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

快刀集(1): 一刀斩断视频片头广告

一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...

day36-多路IO复用

一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中,向量运算构成了理解几何结构的基石。叉乘(外积)与点积(内积)作为向量代数的两大支柱,表面上呈现出截然不同的几何意义与代数形式,却在深层次上揭示了向量间相互作用的…...

Linux基础开发工具——vim工具

文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...

深入解析 ReentrantLock:原理、公平锁与非公平锁的较量

ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...

项目进度管理软件是什么?项目进度管理软件有哪些核心功能?

无论是建筑施工、软件开发,还是市场营销活动,项目往往涉及多个团队、大量资源和严格的时间表。如果没有一个系统化的工具来跟踪和管理这些元素,项目很容易陷入混乱,导致进度延误、成本超支,甚至失败。 项目进度管理软…...