平均精确率均值(mAP)
mAP(mean Average Precision,平均精确率均值) 并不是传统意义上的“精度”(Accuracy),而是一种专门用于评估目标检测、图像分割或信息检索等任务的性能指标。它更全面地反映了模型在不同类别和不同置信度阈值下的表现。
1. 精度(Accuracy) vs. mAP
-
精度(Accuracy):
-
通常用于分类任务,表示模型预测正确的样本占总样本的比例。
-
公式:
-
局限性:在类别不平衡的情况下,精度可能无法准确反映模型性能。
-
-
mAP(mean Average Precision):
-
用于目标检测、图像分割或信息检索任务,综合考虑了精确率(Precision)和召回率(Recall)的表现。
-
计算步骤:
-
对每个类别,计算不同置信度阈值下的精确率(Precision)和召回率(Recall)。
-
绘制 Precision-Recall 曲线。
-
计算曲线下的面积,得到该类别的平均精确率(AP)。
-
对所有类别的 AP 取平均值,得到 mAP。
-
-
优点:能够更全面地反映模型在不同类别和不同置信度阈值下的性能。
-
2. mAP 的计算细节
-
Precision(精确率):
-
表示模型预测为正样本的样本中,实际为正样本的比例。
-
公式:
-
-
Recall(召回率):
-
表示实际为正样本的样本中,被模型正确预测为正样本的比例。
-
公式:
-
-
AP(Average Precision):
-
对每个类别,计算 Precision-Recall 曲线下的面积。
-
公式:
-
在实际计算中,通常通过插值法或离散点求和来近似计算。
-
-
mAP(mean Average Precision):
-
对所有类别的 AP 取平均值。
-
公式:
-
其中,N 是类别数量。
-
3. mAP 的应用场景
-
目标检测:
-
在目标检测任务中,mAP 是评估模型性能的核心指标。它综合考虑了模型对目标边界框的定位精度(通过 IoU 衡量)和分类精度。
-
-
图像分割:
-
在图像分割任务中,mAP 用于评估模型对每个像素的分类精度。
-
-
信息检索:
-
在信息检索任务中,mAP 用于评估检索结果的排序质量。
-
4. mAP 与精度的区别
| 特性 | 精度(Accuracy) | mAP(mean Average Precision) |
|---|---|---|
| 适用任务 | 分类任务 | 目标检测、图像分割、信息检索 |
| 评估维度 | 单一指标 | 综合考虑 Precision 和 Recall |
| 类别不平衡影响 | 影响较大 | 影响较小 |
| 计算复杂度 | 简单 | 较复杂 |
| 直观性 | 直观易懂 | 需要理解 Precision-Recall 曲线 |
5. 总结
-
mAP 不是传统意义上的“精度”,而是一种更全面的性能指标,特别适用于目标检测、图像分割和信息检索等任务。
-
它通过综合考虑精确率和召回率,能够更好地反映模型在不同类别和不同置信度阈值下的表现。
-
在目标检测任务中,mAP 是评估模型性能的核心指标,通常与 IoU 阈值一起使用。
相关文章:
平均精确率均值(mAP)
mAP(mean Average Precision,平均精确率均值) 并不是传统意义上的“精度”(Accuracy),而是一种专门用于评估目标检测、图像分割或信息检索等任务的性能指标。它更全面地反映了模型在不同类别和不同置信度阈…...
VUE学习笔记1__创建VUE实例
核心步骤 <div id"app"><!-- 这里存放渲染逻辑代码 --><h1>{{ msg }}</h1><a href"#">{{count}}</a> </div><!-- 引入在线的开发版本核心包 --> <!-- 引入核心包后全局可使用VUE构造函数 --> <…...
Inxpect毫米波安全雷达:精准检测与动态保护,工业自动化可靠选择
Inxpect毫米波安全雷达具备“精准检测、动态区域保护、环境适应性”三大核心功能。在工业自动化和机器人系统里,这些功能发挥着重要作用,有助于提升安全性与效率。Inxpect雷达运用毫米波技术,在诸如存在灰尘、烟雾或碎屑等复杂环境中,也能保持…...
基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于禁忌搜索算法的TSP问题最优路径搜索,旅行商问题(TSP)是一个经典的组合优化问题。其起源可以追溯到 19 世纪初,…...
C51交通控制系统的设计与实现
实验要求: 本题目拟设计一个工作在十字路口的交通信号灯控制系统,设东西方向为主干道A,南北方向为辅助干道B。要求:(1)用发光二极管模拟交通灯信号;(2)灵活控制主、辅干…...
深度学习的超参数
1. 引言 1.1 什么是超参数? 在机器学习和深度学习中,超参数(Hyperparameter) 是在模型训练前由开发者设置的参数,这些参数决定了模型的训练过程和模型的结构。例如: 神经网络的层数和每层神经元的数量。…...
网络安全面试题及经验分享
本文内容是i春秋论坛面向专业爱好者征集的关于2023年面试题目和答案解析,题目是真实的面试经历分享,具有很高的参考价值。 shiro反序列化漏洞的原理 Shiro反序列化漏洞的原理是攻击者通过精心构造恶意序列化数据,使得在反序列化过程中能够执…...
【Golang 面试题】每日 3 题(三十一)
✍个人博客:Pandaconda-CSDN博客 📣专栏地址:http://t.csdnimg.cn/UWz06 📚专栏简介:在这个专栏中,我将会分享 Golang 面试中常见的面试题给大家~ ❤️如果有收获的话,欢迎点赞👍收藏…...
微服务架构:挑战与机遇并存
微服务架构在提升系统灵活性、可扩展性和容错性的同时,也引入了一系列挑战。微服务带来的挑战主要有以下几点: 1. 系统复杂性增加:想象一下,你原本有一个大厨房(单体应用),里面有几个大厨&…...
Vue语音播报功能
使用Web Speech API的SpeechSynthesis接口来实现文本转语音 Web Speech API可能不在所有浏览器中都能完美支持 特别是旧浏览器 在生产环境中,你可能需要添加功能检测和后备方案。<template><div><textarea v-model"text" placeholder&quo…...
【Java设计模式-4】策略模式,消灭if/else迷宫的利器
各位Java编程小伙伴们!今天咱们要一起探索一个超级厉害的Java设计模式——策略模式,它就像是一把神奇的魔法剑,专门用来斩断那些让我们代码变得乱糟糟的if/else语句迷宫! 一、if/else的烦恼 在编程的奇妙世界里,我们…...
citrix netscaler13.1 重写负载均衡响应头(基础版)
在 Citrix NetScaler 13.1 中,Rewrite Actions 用于对负载均衡响应进行修改,包括替换、删除和插入 HTTP 响应头。这些操作可以通过自定义策略来完成,帮助你根据需求调整请求内容。以下是三种常见的操作: 1. Replace (替换响应头)…...
【AI学习】地平线首席架构师苏箐关于自动驾驶的演讲
在地平线智驾科技畅想日上,地平线副总裁兼首席架构师苏箐(前华为智驾负责人)做了即兴演讲,以下是其演讲的主要内容: 对自动驾驶行业的看法 自动驾驶的难度与挑战:苏箐表示自动驾驶非常难,他做自…...
QILSTE H11-D212HRTCG/5M高亮红绿双色LED灯珠 发光二极管LED
型号:H11-D212HRTCG/5M,一款由QILSTE(HongKong)Technology Co., Ltd精心打造的高亮度红绿双色LED产品,其尺寸仅为2.01.251.1 mm,却蕴含着强大的光电特性。这款产品采用透明平面胶体封装,不仅外观…...
2️⃣java基础进阶——多线程、并发与线程池的基本使用
一、概念介绍 什么是线程,什么是进程,两者有什么关系? 进程是操作系统资源分配的独立单位;而线程是操作系统能够进行调度和分派的最小单位;线程包含于进程之中,是进程中的实际运作单位。 例如:…...
RAG多路召回
什么是多路召回? 多路召回(Multi-Route Retrieval) 是指在信息检索系统中,为了提升检索的全面性和准确性,通过多条不同的检索路径或不同的检索策略来获取信息的技术。多路召回的核心思想是,单一的检索路径…...
复杂 C++ 项目堆栈保留以及 eBPF 性能分析
在构建和维护复杂的 C 项目时,性能优化和内存管理是至关重要的。当我们面对性能瓶颈或内存泄露时,可以使用eBPF(Extended Berkeley Packet Filter)和 BCC(BPF Compiler Collection)工具来分析。如我们在Red…...
网安——计算机网络基础
一、计算机网络概述 1、Internet网相关概念及发展 网络(Network)有若干结点(Node)和连接这些结点的链路(link)所组成,在网络中的结点可以是计算机、集线器、交换机或路由器等多个网络还可以通…...
ZCC1923替代BOS1921Piezo Haptic Driver with Digital Front End
FEATURES • High-Voltage Low Power Piezo Driver o Drive 100nF at 190VPP and 250Hz with 490mW o Drives Capacitive Loads up to 1000nF o Energy Recovery o Differential Output o Small Solution Footprint, QFN & WLCSP • Low Quiescent Current: SHUTDOWN; …...
Kutools for Excel 简体中文版 - 官方正版授权
Kutools for Excel 是一款超棒的 Excel 插件,就像给你的 Excel 加了个超能助手。它有 300 多种实用功能,现在还有 AI 帮忙,能把复杂的任务变简单,重复的事儿也能自动搞定,不管是新手还是老手都能用得顺手。有了它&…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...
ubuntu22.04 安装docker 和docker-compose
首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...
前端高频面试题2:浏览器/计算机网络
本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...
