当前位置: 首页 > news >正文

Kotlin 协程基础十 —— 协作、互斥锁与共享变量

Kotlin 协程基础系列:

Kotlin 协程基础一 —— 总体知识概述

Kotlin 协程基础二 —— 结构化并发(一)

Kotlin 协程基础三 —— 结构化并发(二)

Kotlin 协程基础四 —— CoroutineScope 与 CoroutineContext

Kotlin 协程基础五 —— Channel

Kotlin 协程基础六 —— Flow

Kotlin 协程基础七 —— Flow 操作符(一)

Kotlin 协程基础八 —— Flow 操作符(二)

Kotlin 协程基础九 —— SharedFlow 与 StateFlow

Kotlin 协程基础十 —— 协作、互斥锁与共享变量

本节将介绍在协程间如果有先后执行、互相等待的需求时,应该怎样去处理这种等待和协作的工作。更会与 Java 的线程的协作工作对比,从而说明,在线程中通常不太简单的协作操作,在协程中很容易实现。

1、协程间的协作与等待

从运行角度来看,协程天生就是并行的,不论是对同等级的协程、父子协程还是毫无关系的协程。假如我们需要让协程互相等待,希望在协程的执行过程中可以停住,等待别的协程执行完毕,可以使用 Job 的 join() 或 Deferred 的 await()。

线程对于这种互相等待的需求可以通过 Thread 的 join(),还有 Future 和 CompletableFuture 以及 CountDownLatch。

CountDownLatch 适用于一个线程等待多个线程:

fun main() = runBlocking<Unit> {// countdown 译为倒计时,latch 是门闩、插销,组合起来就是用于倒计时的插销val countDownLatch = CountDownLatch(2)thread {// await() 会在 CountDownLatch 内的 count 减到 0 时结束等待countDownLatch.await()println("Count in CountDownLatch is 0 now,I'm free!")}thread {sleep(1000)// countDown() 会调用原子操作让 CountDownLatch 内的 count 减 1countDownLatch.countDown()println("Invoke countDown,count: ${countDownLatch.count}")}thread {sleep(2000)countDownLatch.countDown()println("Invoke countDown,count: ${countDownLatch.count}")}
}

运行结果:

Invoke countDown,count: 1
Count in CountDownLatch is 0 now,I'm free!
Invoke countDown,count: 0

修改 CountDownLatch 构造方法的 count 参数就可以修改要等待的线程数量,对于这种一个等待多个的业务需求,在协程中也可以用 join() 来做:

fun main() = runBlocking<Unit> {// 两个前置任务val preJob1 = launch {delay(1000)}val preJob2 = launch {delay(2000)}// 此协程需要等待两个协程执行之后再运行自己的内容launch {preJob1.join()preJob2.join()// 等待完前置任务,再做自己的事...}
}

实际上线程里也可以这么做,只不过因为线程本身的结构化管理比较麻烦,所以在正式的项目里很少真正的这么写。但因为协程可以结构化取消,因此它的 join() 比线程的 join() 更实用,在正式项目里的应用也较多。

其实,用 Channel 也能实现类似 CountDownLatch 那种,不指定具体等待哪些协程,只等待固定的次数的效果:

private fun channelSample() = runBlocking<Unit> {// 指定 Channel 的容量为 2val channel = Channel<Unit>(2)// 由于要等待两次发送数据才能继续执行后续代码,因此要 repeat(2) 接收launch {repeat(2) {channel.receive()}}launch {delay(1000)channel.send(Unit)}launch {delay(2000)channel.send(Unit)}
}

通过两个简单的例子可以发现,线程中有些复杂、比较底层、不太容易使用的协作和等待 API,在协程中的对应/等价 API 难度要大大降低。

2、select():先到先得

select() 会在内部开启多线竞赛,谁最快就用谁。

onJoin() 是仅限于在 select 代码块中才能调用的函数,它是一个监听注册,会监听 Job 的结束,不论 Job 是正常结束还是被取消,在其结束时都会回调执行 onJoin() 大括号的内容,并且大括号的返回值会作为 select() 的返回值:

fun main() = runBlocking<Unit> {val scope = CoroutineScope(EmptyCoroutineContext)val job1 = scope.launch {delay(1000)println("job1 done")}val job2 = scope.launch {delay(2000)println("job2 done")}val job = scope.launch {val result = select {// select 只执行最先结束的 onJoin 回调job1.onJoin {1}job2.onJoin {2}}println("result: $result")}joinAll(job, job1, job2)
}

运行结果:

job1 done
result: 1
job2 done

结果能看出,select() 只执行了最先结束的 job1 的 onJoin,没有执行 job2 的。

与 Job 的 onJoin() 功能类似的还有:Deferred 的 onAwait()、Channel 的 onSend()、onReceive() 以及 onReceiveCatching()。此外还有一个特殊的函数 onTimeout(),如果 select() 内所有的监听回调都没有在 onTimeout() 设置的超时时间内完成,那么就由 onTimeout() 作为 select() 的返回值:

@OptIn(ExperimentalCoroutinesApi::class)
fun main() = runBlocking<Unit> {val scope = CoroutineScope(EmptyCoroutineContext)val job1 = scope.launch {delay(1000)println("job1 done")}val deferred = scope.async {delay(2000)println("deferred done")}val channel = Channel<String>()val job = scope.launch {val result = select {// select 只执行最先结束的 onJoin 回调job1.onJoin {1}deferred.onAwait {2}channel.onSend("haha") {}/*channel.onReceive {}channel.onReceiveCatching {}*/onTimeout(500) {"Timeout!"}}println("result: $result")}joinAll(job, job1)
}

运行结果:

result: Timeout!
job1 done

3、互斥锁和共享变量

在遇到一个不太好理解的知识点时,我们还是先说线程,再引入到协程中。

线程中有一个术语叫竞态条件,或者说竞争条件,英文是 race condition。这个词的含义比较广,在 Java 和 Kotlin 这种高级编程语言中,它指的是多个线程访问共享资源时,由于缺乏并发控制,导致资源的访问顺序不受控,进而导致出现错误的结果的条件。

在 Kotlin 中,仍然可以使用我们在 Java 中熟知的 synchronized 和 Lock 这两种锁机制来保证共享资源的线程安全,也提供了新的选项,下面我们来说一说。

3.1 @Synchronized

Kotlin 中没有 synchronized 关键字,代替它的是 @Synchronized 注解。对于方法而言,使用 @Synchronized 注解的作用与 Java 中使用 synchronized 关键字修饰方法的作用是一样的。被 @Synchronized 注解标记的方法不能同时被多个线程(注意,不是协程)执行。

而 Java 中 synchronized 代码块在 Kotlin 中被 synchronized 函数代替了:

fun main() = runBlocking<Unit> {var number = 0val lock = Any()val thread1 = thread {repeat(100_000) {synchronized(lock) {number++}}}val thread2 = thread {repeat(100_000) {synchronized(lock) {number--}}}thread1.join()thread2.join()println("result: $number") // 输出 0
}

同样的代码结构也可以用在协程中:

fun main() = runBlocking<Unit> {var number = 0val lock = Any()val scope = CoroutineScope(EmptyCoroutineContext)val job1 = scope.launch {repeat(100_000) {synchronized(lock) {number++}}}val job2 = scope.launch {repeat(100_000) {synchronized(lock) {number--}}}job1.join()job2.join()println("result: $number")
}

synchronized() 仍然掐住的是线程,确切的说是掐住了执行 synchronized() 所在的协程的线程。虽然这样做有点浪费,因为不止掐住了协程,连运行该协程代码的线程都被掐住了,但确实实现了共享资源的线程安全,而且 synchronized() 本来也是针对线程的,只不过从协程的角度看,如果可以只掐住协程,不影响运行该协程代码的线程就更好了。

这个区别就好像 delay() 与 sleep() 一样。协程的 delay() 只会挂起当前的协程,但是不会影响其所在的线程;而 sleep() 是让整个线程休眠。因此在协程中,为了不影响整个线程,我们通常都是使用 delay() 仅作用于当前协程,而不会使用 sleep() 为了让协程挂起而影响到整个线程的运行。下一节要讲的 Mutex 就可以解决这个问题。

Lock 的用法也大致相同,这里不多赘述。

3.2 Mutex

Mutex 是计算机领域的专属词汇,全称是 mutual exclusion,即互斥。Kotlin 提供的 Mutex 是基于协程的、挂起式的,不同于前面两个是基于线程的、阻塞式的。Mutex 是协程自己的实现,它不卡线程,性能更好,使用也很方便:

fun main() = runBlocking<Unit> {var number = 0val mutex = Mutex()val scope = CoroutineScope(EmptyCoroutineContext)val job1 = scope.launch {repeat(100_000) {try {mutex.lock()number++} finally {mutex.unlock()}}}val job2 = scope.launch {repeat(100_000) {mutex.withLock {number--}}}job1.join()job2.join()println("result: $number")
}

job1 内使用的是常规用法,在操作共享变量前用 lock() 加锁,在 finally 代码块中解锁。job2 内使用的是简便写法,withLock() 将代码块内的代码放入 try 中执行,在 finally 中用 unlock() 解锁:

@OptIn(ExperimentalContracts::class)
public suspend inline fun <T> Mutex.withLock(owner: Any? = null, action: () -> T): T {contract {callsInPlace(action, InvocationKind.EXACTLY_ONCE)}lock(owner)return try {action()} finally {unlock(owner)}
}

Mutex 的优势是性能,但由于它是基于协程的,因此只能在协程中使用。所以,如果只在协程中使用共享资源,那么就用 Mutex,如果需要在线程中使用,就要用上一节说的 synchronized 与 Lock。

3.3 Semaphore

Java 还有一个 Semaphore,信号量,一个可以被多个线程持有的锁。你可以在它的构造方法中指定它最多可以被几个线程持有,如果有多余指定数量的线程去获取 Semaphore 就会陷入等待。获取锁用 acquire(),释放锁用 release()。

由于共享变量是只要有两个线程同时访问就会导致出错了,因此允许多个线程持有的 Semaphore 并不能用于解决竞态条件的问题,它是用来做性能控制的。你可以用它来实现类似线程池的功能,只不过你实现出来的是自己定制的对象池:同一时间最多只有多少个对象同时在做事,满了之后如果再来新对象就得等着,直到有新的坑让出来,这些新对象才能开始做事。

Kotlin 提供了一个 Semaphore 的协程版本,就叫 Semaphore,定位与 Java 的 Semaphore 相同,只不过是协程版本。

3.4 其他 API

在传统的线程系统里,还有一组典型的 API:wait()、notify()、notifyAll()。它们三个属于更底层的 API,在线程系统里,它既能实现互斥锁,也能实现线程之间相互等待的功能。但事实上,这些年已经基本没人再用这组函数了。因为 synchronized 关键字与 Lock 的推出,已经基本上完全替代了它们,而且它们用起来也很麻烦,所以现在没人用。正因如此,协程没有推出与它们类似的 API。

AtomicInteger 与 CopyOnWriteArrayList 等等也可以在协程中使用。虽然它们是针对线程的,但是卡住线程的同时一定把协程也卡住了。所以在协程里也可以无风险地使用。

此外,volatile 与 transient 也可以在协程中使用,只不过不再是关键字,而是注解。

4、ThreadLocal

ThreadLocal 是线程的局部变量,即该变量在每个线程都是独立的,从不同的线程中访问该变量,这些线程对变量的值的读写都是相互独立的,对每个线程都有独立的副本。

ThreadLocal 是用来干嘛的?它的定位就像它的名字一样,就是针对线程的局部变量。Java 变量按照作用域由小到大可以划分为局部变量(方法内)、成员变量(类内)、静态变量(全局),ThreadLocal 是一种介于局部变量和静态变量之间的一种变量,范围比方法大,比静态全局小,只在当前线程范围内有效。

ThreadLocal 是对 Java 线程一个很关键的能力补充。前面提过,协程相对线程的一大优势就是线程不具备结构化管理的能力,而协程结构化管理的能力相当强大。线程不具备结构化管理的能力,但我们开发时是有结构化管理的需求的,这时就要用 ThreadLocal。有了 ThreadLocal 之后,在同一个线程里执行的多个方法之间就可以共享变量了,且该共享变量只针对当前线程有效,跨线程时还是独立的。因此 ThreadLocal 通常会作为静态变量存在。

ThreadLocal 在协程中的等价物是什么?有什么东西是跨方法的、针对协程的局部变量吗?CoroutineContext 就是协程里的 ThreadLocal。

本来,由于协程是具备结构化管理能力的,你完全不需要在协程内使用 ThreadLocal。但是开发过程中,免不了与 Java 代码进行协作,如果想在协程代码里访问老代码里的 ThreadLocal 对象,是不能像如下这样直接使用的:

val kotlinLocalString = ThreadLocal<String>()
fun main() = runBlocking<Unit> {val scope = CoroutineScope(EmptyCoroutineContext)val job = scope.launch {kotlinLocalString.set("Test")delay(1000)println(kotlinLocalString.get())}job.join()
}

kotlinLocalString 的 get() 拿到的值一定是 set() 设置的值吗?不一定!因为虽然协程没变,但是执行协程代码的线程有可能改变了,delay() 的时候线程被让出,可能会去执行其他协程的代码。等 delay() 结束继续执行下面代码的时候,有可能就不是在刚才的线程中执行了。因为协程只能保证在执行挂起函数之后依然运行在刚才的 ContinuationInterceptor 所管理的某一个线程池上,不能保证同一个线程。

因此 ThreadLocal 不能在协程中直接使用,因为它的效果在协程中变得不可靠了。怎么办?用 asContextElement() 把 ThreadLocal 转换成 CoroutineContext:

val kotlinLocalString = ThreadLocal<String>()
fun main() = runBlocking<Unit> {val scope = CoroutineScope(EmptyCoroutineContext)val job = scope.launch {val stringContext = kotlinLocalString.asContextElement("Test")withContext(stringContext) {delay(1000)println(kotlinLocalString.get())}}job.join()
}

asContextElement() 是 ThreadLocal 的扩展函数,它会把参数里的值封装到返回值的 ThreadLocalElement 中。再将结果填到 withContext() 的参数中,包住获取 ThreadLocal 值的代码,这时候里面的 ThreadLocal 就是对协程兼容的了。不管里面怎么切协程,只要没出协程,它的值都会被保持住。

相关文章:

Kotlin 协程基础十 —— 协作、互斥锁与共享变量

Kotlin 协程基础系列&#xff1a; Kotlin 协程基础一 —— 总体知识概述 Kotlin 协程基础二 —— 结构化并发&#xff08;一&#xff09; Kotlin 协程基础三 —— 结构化并发&#xff08;二&#xff09; Kotlin 协程基础四 —— CoroutineScope 与 CoroutineContext Kotlin 协程…...

Java中网络编程的学习

目录 网络编程概述 网络模型 网络通信三要素: IP 端口号 通信协议 IP地址&#xff08;Internet Protocol Address&#xff09; 端口号 网络通信协议 TCP 三次握手 四次挥手 UDP TCP编程 客户端Socket的工作过程包含以下四个基本的步骤&#xff1a; 服务器程序…...

[计算机网络]一. 计算机网络概论第一部分

作者申明&#xff1a;作者所有文章借助了各个渠道的图片视频以及资料&#xff0c;在此致谢。作者所有文章不用于盈利&#xff0c;只是用于个人学习。 1.0推荐动画 【网络】半小时看懂<计算机网络>_哔哩哔哩_bilibili 1.1计算机网络在信息时代的作用 在当今信息时代&…...

【0393】Postgres内核 checkpointer process ③ 构建 WAL records 工作缓存区

1. 初始化 ThisTimeLineID、RedoRecPtr 函数 InitXLOGAccess() 内部会初始化 ThisTimeLineID、wal_segment_size、doPageWrites 和 RedoRecPtr 等全局变量。 下面是这四个变量初始化前的值: (gdb) p ThisTimeLineID $125 = 0 (gdb) p wal_segment_size $126 = 16777216 (gdb…...

正则表达式基础知识及grep、sed、awk常用命令

文章目录 前言一、正则表达式元字符和特性1. 字符匹配2. 量词3. 字符类4. 边界匹配5. 分词和捕获6. 特殊字符7. 位置锚定 二、grep常用参数1. -n额外输出行号2. -v 排除匹配的行3. -E 支持扩展正则匹配4. -e进行多规则匹配搜索5. -R 递归匹配目录中的文件内容6. -r递归地搜索目…...

redhat安装docker 24.0.7

1、下载docker镜像包 wget https://download.docker.com/linux/static/stable/x86_64/docker-24.0.7.tgz 2、解压 tar -xvf docker-24.0.7.tgz 3、解压的docker文件夹全部移动至/usr/bin目录 cd docker cp -p docker/* /usr/bin 4、注册服务 vi /usr/lib/systemd/syste…...

【excel】VBA简介(Visual Basic for Applications)

文章目录 一、基本概念二、语法2.1 数据类型2.11 基本数据类型2.12 常量2.13 数组 2.2 控制语句2.21 条件语句2.22 循环语句2.23 错误处理&#xff1a;On Error2.24 逻辑运算 2.3 其它语句2.31 注释2.32 with语句 2.4 表达式2.41 常见表达式类型2.42 表达式的优先级 2.5 VBA 的…...

【大厂面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据...本篇介绍为什么self-attention可以堆叠多层,这有什么作用?

【大厂面试AI算法题中的知识点】方向涉及&#xff1a;ML/DL/CV/NLP/大数据…本篇介绍为什么self-attention可以堆叠多层&#xff0c;这有什么作用&#xff1f; 【大厂面试AI算法题中的知识点】方向涉及&#xff1a;ML/DL/CV/NLP/大数据…本篇介绍为什么self-attention可以堆叠…...

NanoKVM简单开箱测评和拆解,让普通电脑实现BMC/IPMI远程管理功能

Sipeed推出了NanoKVM&#xff0c;简直是没有BMC的台式机和工作站的福音。有了这个就可以轻松实现以往服务器才有的远程管理功能。 NanoKVM 简介 Lichee NanoKVM 是基于 LicheeRV Nano 的 IP-KVM 产品&#xff0c;继承了 LicheeRV Nano 的极致体积 和 强大功能。 NanoKVM 包含…...

【Idea】编译Spring源码 read timeout 问题

Idea现在是大家工作中用的比较多的开发工具&#xff0c;尤其是做java开发的&#xff0c;那么做java开发&#xff0c;了解spring框架源码是提高自己技能水平的一个方式&#xff0c;所以会从spring 官网下载源码&#xff0c;导入到 Idea 工具并编译&#xff0c;但是发现build的时…...

VSCode的配置与使用(C/C++)

从0开始教你在vscode调试一个C文件 一.首先是配置你的编译环境&#xff0c;添加到环境变量&#xff08;默认你是全新的电脑&#xff0c;没有安装vs2019之类的&#xff09; 原因&#xff1a;因为相比于vs2019&#xff0c;vscode只是个代码编辑器&#xff0c;相当于一个彩色的、…...

SpringMVC (1)

目录 1. 什么是Spring Web MVC 1.1 MVC的定义 1.2 什么是Spring MVC 1.3 Spring Boot 1.3.1 创建一个Spring Boot项目 1.3.2 Spring Boot和Spring MVC之间的关系 2. 学习Spring MVC 2.1 SpringBoot 启动类 2.2 建立连接 1. 什么是Spring Web MVC 1.1 MVC的定义 MVC 是…...

本地部署大模型—MiniCPM-V 2.0: 具备领先OCR和理解能力的高效端侧多模态大模型

MiniCPM-V 2.0: 具备领先OCR和理解能力的高效端侧多模态大模型 简介 MiniCPM 系列的最新多模态版本 MiniCPM-V 2.0。该模型基于 [MiniCPM 2.4B和 SigLip-400M 构建,共拥有 2.8B 参数。MiniCPM-V 2.0 具有领先的光学字符识别(OCR)和多模态理解能力。该模型在综合性 OCR 能力…...

国产linux系统(银河麒麟,统信uos)使用 PageOffice 实现后台批量生成PDF文档

PageOffice 国产版 &#xff1a;支持信创系统&#xff0c;支持银河麒麟V10和统信UOS&#xff0c;支持X86&#xff08;intel、兆芯、海光等&#xff09;、ARM&#xff08;飞腾、鲲鹏、麒麟等&#xff09;、龙芯&#xff08;LoogArch&#xff09;芯片架构。 PageOffice 版本&…...

Python 扫描枪读取发票数据导入Excel

财务需要一个扫描枪扫描发票文件&#xff0c;并将主要信息录入Excel 的功能。 文件中sheet表的列名称&#xff0c;依次为&#xff1a;发票编号、发票编码、日期、金额、工号、扫描日期。 扫描的时候&#xff0c;Excel 文件需要关闭&#xff0c;否则会报错。 import openpyxl …...

电源自动测试系统中的ate定制化包含哪些内容?

1. 测试项目和指标 基础测试项目&#xff1a;虽然大多数电源模块的基础测试项目&#xff08;如输入输出电压、电流、效率等&#xff09;已经包含在测试系统中&#xff0c;但针对特殊或小众的测试项目&#xff0c;如VPX电源测试时的通讯验证&#xff0c;可以根据客户需求进行定…...

人工智能-机器学习之多分类分析(项目实战二-鸢尾花的多分类分析)

Softmax回归听名字&#xff0c;依然好像是做回归任务的算法&#xff0c;但其实它是去做多分类任务的算法。 篮球比赛胜负是二分类&#xff0c;足球比赛胜平负就是多分类 识别手写数字0和1是二分类&#xff0c;识别手写数字0-9就是多分类 Softmax回归算法是一种用于多分类问题…...

多包单仓库(monorepo)实现形式

目录 背景 需求和方案 从0开始搭建一个Monorepo项目 创建 配置全局公共样式 配置全局公共组件 方式1:不需要独立发布的组件包,只在当前项目的子项目中使用 方式2:需要独立发布和版本维护的包 子项目的独立构建和部署 总结 Monorepo优势 便于代码维护、管理 支持…...

Java冒泡排序算法之:变种版

什么是冒泡排序算法&#xff1f; 冒泡排序是一种简单的排序算法&#xff0c;通过多次遍历待排序的数组&#xff0c;逐步将最大的&#xff08;或最小的&#xff09;元素“冒泡”到数组的一端。它以其操作过程类似气泡从水底冒至水面而得名。 冒泡排序的工作原理 比较相邻元素&…...

AAPM:基于大型语言模型代理的资产定价模型,夏普比率提高9.6%

“AAPM: Large Language Model Agent-based Asset Pricing Models” 论文地址&#xff1a;https://arxiv.org/pdf/2409.17266v1 Github地址&#xff1a;https://github.com/chengjunyan1/AAPM 摘要 这篇文章介绍了一种利用LLM代理的资产定价模型&#xff08;AAPM&#xff09;…...

Spring常见知识

1、什么是spring的ioc&#xff1f; 其实就是控制反转&#xff0c;提前定义了一个bean&#xff0c;到时候使用的时候直接autowire就可以了。目的是减低计算机代码之间的耦合度。 创建三个文件&#xff0c;分别是Bean的定义、Bean的使用、Bean的配置。 IOC通过将对象创建和管理…...

计算机网络的五层协议

计算机网络的五层协议 ‌计算机网络的五层协议模型包括物理层、数据链路层、网络层、传输层和应用层&#xff0c;每一层都有其特定的功能和相关的协议。‌‌1 ‌物理层‌&#xff1a;负责传输原始的比特流&#xff0c;通过线路&#xff08;有线或无线&#xff09;将数据转换为…...

Bluetooth LE Audio - 蓝牙无线音频新应用 (上)

SIG联盟&#xff08;Bluetooth Special Interest Group&#xff09;自2020年开始推广新的LE Audio&#xff0c;在穿戴式装置掀起一股热潮&#xff0c;各个品牌商、制造商、第三方软件商都积极的寻找新的LE Audio规格究竟能提供什么样的新应用。究竟LE Audio如何改变你我的生活、…...

如何快速准备数学建模?

前言 大家好,我是fanstuck。数学建模不仅是解决复杂现实问题的一种有效工具,也是许多学科和行业中的关键技能。从工程、经济到生物、环境等多个领域,数学建模为我们提供了将实际问题转化为数学形式,并利用数学理论和方法进行求解的强大能力。然而,对于许多初学者而言,如…...

如何在linux系统上完成定时开机和更新github端口的任务

任务背景 1.即使打开代理&#xff0c;有的时候github去clone比较大的文件时也会出问题。这时需要每小时更新一次github的host端口&#xff1b; 2.马上要放假&#xff0c;想远程登录在学校的台式电脑&#xff0c;但学校内网又不太好穿透。退而求其次&#xff0c;选择定时启动电…...

Jupyter notebook中运行dos指令运行方法

Jupyter notebook中运行dos指令运行方法 目录 Jupyter notebook中运行dos指令运行方法一、DOS(磁盘操作系统&#xff09;指令介绍1.1 DOS介绍1.2 DOS指令1.2.1 DIR - 显示当前目录下的文件和子目录列表。1.2.2 CD 或 CHDIR - 改变当前目录1.2.3 使用 CD .. 可以返回上一级目录1…...

探索 Linux:(一)介绍Linux历史与Linux环境配置

探索 Linux:&#xff08;一&#xff09;介绍Linux历史与Linux环境配置 一. 计算机与操作系统的历史1.1计算机的历史1.2操作系统的历史 二、Unix 操作系统的历史三、Linux 与安卓的关系3.1Linux 与安卓的关系3.2安卓的历史 四、Linux 简单介绍五、Linux 环境安装5.1 虚拟机5.2 直…...

前端【2】html添加样式、CSS选择器

一、为html添加样式的三种方法 1、内部样式 2、外部样式 3、行内样式 二、css的使用--css选择器 1、css基本选择器 元素选择器 属性选择器 id选择器 class/类选择器 通配符选择器 2、群组选择器-多方面筛选 3、关系选择器 后代选择器【包含选择器】 子元素选择器…...

Yolov8 目标检测剪枝学习记录

最近在进行YOLOv8系列的轻量化&#xff0c;目前在网络结构方面的优化已经接近极限了&#xff0c;所以想要学习一下模型剪枝是否能够进一步优化模型的性能 这里主要参考了torch-pruning的基本使用&#xff0c;v8模型剪枝&#xff0c;Jetson nano部署剪枝YOLOv8 下面只是记录一个…...

LeDeCo:AI自动化排版、设计、美化海报

1.简介 平面设计是一门艺术学科&#xff0c;致力于创造吸引注意力和有效传达信息的视觉内容。今天&#xff0c;创造视觉上吸引人的设计完全依赖于具有艺术创造力和技术专长的人类设计师&#xff0c;他们巧妙地整合多模态图形元素&#xff0c;这是一个复杂而耗时的过程&#xf…...