LLM大语言模型的分类
从架构和功能的角度来看,LLM(Large Language Model,大语言模型)主要可以分为以下几种类型:
**1. 基础语言模型:**
* **定义:** 通过在大规模文本数据上进行预训练,学习语言的规律和模式,获得通用语言理解能力和生成能力的模型。
* **特点:** 参数量大,计算资源需求高,具有强大的语言理解能力和生成能力。
* **典型代表:** GPT-3、BERT、T5等。
**2. 指令微调模型:**
* **定义:** 在基础语言模型的基础上,通过在指令数据集上进行微调,使其能够更好地理解和执行用户指令的模型。
* **特点:** 具有更强的指令跟随能力和对话能力,能够根据用户指令生成更符合需求的回复。
* **典型代表:** GPT-3.5、GPT-4等。
**3. 多模态模型:**
* **定义:** 可以处理和理解多种模态(如文本、图像、音频等)输入,并生成相应输出的模型。
* **特点:** 具有跨模态理解能力,能够进行模态间的交互和生成。
* **典型代表:** CLIP、DALL-E、GPT-4(支持图像输入)等。
**4. 领域专用模型:**
* **定义:** 针对特定领域(如医疗、法律、金融等)进行优化,具备该领域专业知识和理解能力的模型。
* **特点:** 在特定领域内具有更高的准确性和专业性。
* **典型代表:** 医疗领域的BioGPT,法律领域的LegalGPT等。
**5. 小型语言模型:**
* **定义:** 参数量较小,计算资源需求较低,适用于资源受限场景的模型。
* **特点:** 计算效率高,部署灵活,适合移动端、嵌入式设备等场景。
* **典型代表:** GPT-2、DistilGPT等。
**其他分类方式:**
* **按训练方式分类:** 自监督学习模型、强化学习模型等。
* **按应用场景分类:** 对话模型、翻译模型、摘要模型等。
* **按参数规模分类:** 小型模型、中型模型、大型模型、巨型模型等。
**总结:**
以上是对LLM大语言模型的常见分类方式,不同的分类角度可以让我们更全面地了解这些模型的特点和应用场景。随着AI技术的不断发展,未来还会有更多新型的LLM出现。
相关文章:
LLM大语言模型的分类
从架构和功能的角度来看,LLM(Large Language Model,大语言模型)主要可以分为以下几种类型: **1. 基础语言模型:** * **定义:** 通过在大规模文本数据上进行预训练,学习语言的规律和模式&#…...
【北京迅为】iTOP-4412全能版使用手册-第八十七章 安装Android Studio
iTOP-4412全能版采用四核Cortex-A9,主频为1.4GHz-1.6GHz,配备S5M8767 电源管理,集成USB HUB,选用高品质板对板连接器稳定可靠,大厂生产,做工精良。接口一应俱全,开发更简单,搭载全网通4G、支持WIFI、蓝牙、…...
【深度学习】神经网络之Softmax
Softmax 函数是神经网络中常用的一种激活函数,尤其在分类问题中广泛应用。它将一个实数向量转换为概率分布,使得每个输出值都位于 [0, 1] 之间,并且所有输出值的和为 1。这样,Softmax 可以用来表示各类别的预测概率。 Softmax 函…...
容器渗透横向
本质上要获得 1.获得容器IP段 2.获得主机IP段 3.获得本机IP 4.通过CNI或Docker0等扫描本机端口 Flannel 容器信息 rootubuntu-linux-22-04-desktop:/home/parallels/Desktop# k get po -A -o wide NAMESPACE NAME …...
黑马Java面试教程_P1_导学与准备篇
系列博客目录 文章目录 系列博客目录导学Why?举例 准备篇企业是如何筛选简历的(筛选简历的规则)HR如何筛选简历部门负责人筛选简历 简历注意事项简历整体结构个人技能该如何描述项目该如何描述 应届生该如何找到合适的练手项目项目来源找到项目后,如何深入学习项目…...
《自动驾驶与机器人中的SLAM技术》ch4:预积分学
目录 1 预积分的定义 2 预积分的测量模型 ( 预积分的测量值可由 IMU 的测量值积分得到 ) 2.1 旋转部分 2.2 速度部分 2.3 平移部分 2.4 将预积分测量和误差式代回最初的定义式 3 预积分的噪声模型和协方差矩阵 3.1 旋转部分 3.2 速度部分 3.3 平移部分 3.4 噪声项合并 4 零偏的…...
Docker部署MySQL 5.7:持久化数据的实战技巧
在生产环境中使用Docker启动MySQL 5.7时,需要考虑数据持久化、配置文件管理、安全性等多个方面。以下是一个详细的步骤指南。 1. 准备工作 (1)创建挂载目录 在宿主机上创建用于挂载的目录,以便持久化数据和配置文件。 sudo mkdi…...
Spring框架 了解
深入浅出Spring框架:为初学者量身定制的入门指南 引言 在现代Java开发中,Spring框架无疑是构建企业级应用的核心技术之一。无论是初学者还是经验丰富的开发者,掌握Spring都能极大地提升你的编程技能和项目开发效率。本文将带你深入了解Spri…...
低代码独特架构带来的编译难点及多线程解决方案
前言 在当今软件开发领域,低代码平台以其快速构建应用的能力,吸引了众多开发者与企业的目光。然而,低代码平台独特的架构在带来便捷的同时,也给编译过程带来了一系列棘手的难点。 一,低代码编译的难点 (1…...
如何使用Ultralytics训练自己的yolo5 yolo8 yolo10 yolo11等目标检测模型
Ultralytics正在以惊人的速度吸收优秀的CV算法,之前Ultralytics定位于YOLOV8,但逐渐地扩展到支持其他版本的YOLO,最新版本的ultralytics全面支持yolo5 yolo7 yolo8 yolo9 yolo10 yolo11,包含模型的训练、验证、预测、部署等。毫无…...
Java技术栈 —— Andorid开发入门
Java技术栈 —— Andorid开发入门 一、搭建开发环境二、HelloWorld三、将Andorid项目打包成APK文件,并安装至手机上四、开发常见问题 一、搭建开发环境 不用Intellij,而是用Andorid Studio(免费),这是专门给Andorid的IDE。 参考文章或视频链…...
Qt天气预报系统获取天气数据
Qt天气预报系统获取天气数据 1、获取天气数据1.1添加天气类头文件1.2定义今天和未来几天天气数据类1.3定义一个解析JSON数据的函数1.4在mainwindow中添加weatherData.h1.5创建今天天气数据和未来几天天气数据对象1.6添加parseJson定义1.7把解析JSON数据添加进去1.8添加错误1.9解…...
力扣 搜索二维矩阵
二分查找,闭区间与开区间的不同解法。 题目 乍一看,不是遍历一下找到元素就可以了。 class Solution {public boolean searchMatrix(int[][] matrix, int target) {for (int[] ints : matrix) {for (int ans : ints) {if (ans target) return true;}}…...
JavaScript 操作符与表达式
Hi, 我是布兰妮甜,编写流畅、愉悦用户体验的程序员。JavaScript 是一种功能强大且灵活的编程语言,广泛应用于前端和后端开发。它提供了一系列丰富的操作符和表达式来处理数据、执行逻辑判断以及控制程序流程。理解这些概念对于编写高效、可读性强的代码至…...
深度学习 Pytorch 张量(Tensor)的创建和常用方法
1 张量的基本创建及其类型 和Numpy中的array一样,张量的本质也是结构化地组织了大量的数据。 并且在实际操作中,张量的创建和基本功能也与其非常类似。 1.1 张量(Tensor)函数创建方法 张量的最基本创建方法和Numpy中创建Array的格式一致。 # Numpy创建…...
在VMwareFusion中使用Ubuntu
在VMwareFusion使用Ubuntu 在VMwareFusion使用Ubuntu背景在VMwareFusion虚拟机里使用Ubuntu1、集成桌面工具2、主机和虚拟机之间共享剪贴板内容3、设置root用户密码4、设置静态ip4.1、静态ip和动态ip的区别4.2、查看当前ip4.2、linux网络配置文件所在位置4.3、基于ubuntu22.04.…...
%.*s——C语言中printf 函数中的一种格式化输出方式
在C语言中,%.*s 是 printf 函数中的一种格式化输出方式,用于控制字符串的输出长度。具体来说,%.*s 中的 * 表示输出宽度(即最多输出的字符数)是一个变量,这个变量的值在运行时通过 printf 函数的参数传递。…...
基于微信小程序的摄影竞赛系统设计与实现(LW+源码+讲解)
专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...
hydra破解密码
hydra九头蛇是常用的密码破解工具 1、破解centos ssh密码 hydra -l root -P password.txt ssh://192.168.1.107:2222 hydra -l root -P password.txt -s 2222 192.168.1.107 ssh2、破解ftp hydra -l allen -P e:\aa.txt ftp://127.0.0.1 hydra -l allen -P e:\aa.txt ftp:…...
JAVA之外观模式
外观模式,又称门面模式,是一种结构型设计模式,旨在为复杂的子系统提供一个统一且简化的接口。通过这一模式,客户端可以更加便捷地与子系统交互,而无需深入了解其内部结构和实现细节。外观模式不仅简化了客户端的使用&a…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...
ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
