当前位置: 首页 > news >正文

力扣 搜索二维矩阵

二分查找,闭区间与开区间的不同解法。

题目

乍一看,不是遍历一下找到元素就可以了。

class Solution {public boolean searchMatrix(int[][] matrix, int target) {for (int[] ints : matrix) {for (int ans : ints) {if (ans == target) return true;}}return false;}
}

可以通过的,但还是可以优化一下的。这题可以用二分的思路,可以把整个矩阵看成一大个数组,若将矩阵每一行拼接在上一行的末尾,则会得到一个升序数组,我们可以在该数组上二分找到目标元素。但是这种方法在每一行元素个数不一时会失效。

时间复杂度:O(logmn),空间复杂度:O(1)。

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int m = matrix.length, n = matrix[0].length;int low = 0, high = m * n - 1;while (low <= high) {int mid = (high - low) / 2 + low;int x = matrix[mid / n][mid % n];if (x < target) {low = mid + 1;} else if (x > target) {high = mid - 1;} else {return true;}}return false;}
}

以上为标准二分查找的写法,其中首尾做为边界,条件时while (low <= high),接着如果目标值偏大则在右边找,即low = mid + 1,反之,目标值偏小时往左边找,即 high = mid - 1,然后当low指针从左边到target时扫了一遍,当high指针从右边到target时扫了一遍,当两个指针重叠相遇时,进一步判断两个指针定住的数是不是目标数,然后退出循环。

这题还可以先对行二分,再对列二分,进行两次二分查找。每行的第一个元素大于前一行的第一个元素,矩阵第一列的元素是升序的。对矩阵的第一列的元素二分查找,找到最后一个不大于目标值的元素,然后在该元素所在行中二分查找目标值是否存在。

时间复杂度:O(logmn),空间复杂度:O(1)。

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int rowIndex = binarySearchFirstColumn(matrix, target);if (rowIndex < 0) {return false;}return binarySearchRow(matrix[rowIndex], target);}public int binarySearchFirstColumn(int[][] matrix, int target) {int low = -1, high = matrix.length - 1;while (low < high) {int mid = (high - low + 1) / 2 + low;if (matrix[mid][0] <= target) {low = mid;} else {high = mid - 1;}}return low;}public boolean binarySearchRow(int[] row, int target) {int low = 0, high = row.length - 1;while (low <= high) {int mid = (high - low) / 2 + low;if (row[mid] == target) {return true;} else if (row[mid] > target) {high = mid - 1;} else {low = mid + 1;}}return false;}
}

其中,用了一个左开右闭区间的二分查找,可以先进行扩充边界,然后条件改为while (low < high),接着low要设置为mid,退出的条件即当low跟high重叠时,此时的low是mid了,看是不是要找的target。当然,这题用左闭右开区间的二分查找也是类似,不过要注意以下返回值,要取到不大于目标值的最大行索引。

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int rowIndex = binarySearchFirstColumn(matrix, target);if (rowIndex < 0) {return false;}return binarySearchRow(matrix[rowIndex], target);}
public int binarySearchFirstColumn(int[][] matrix, int target) {int low = 0, high = matrix.length;  while (low < high) {  int mid = (high - low) / 2 + low;  if (matrix[mid][0] <= target) {  low = mid + 1;} else {  high = mid;  }}return high-1; 
}public boolean binarySearchRow(int[] row, int target) {int low = 0, high = row.length - 1;while (low <= high) {int mid = (high - low) / 2 + low;if (row[mid] == target) {return true;} else if (row[mid] > target) {high = mid - 1;} else {low = mid + 1;}}return false;}
}

然后,也可以用最经典的标准二分模板去写。

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int rowIndex = binarySearchFirstColumn(matrix, target);if (rowIndex < 0) {return false;}return binarySearchRow(matrix[rowIndex], target);}
public int binarySearchFirstColumn(int[][] matrix, int target) {// 初始化low为0,high为矩阵最后一行的索引int low = 0, high = matrix.length - 1;while (low <= high) {  // 当low不大于high时继续循环int mid = (high - low) / 2 + low;  // 计算中间位置// 如果中间位置的行的第一个元素小于或等于目标值,则该行及之后的行可能是候选行if (matrix[mid][0] <= target) {low = mid + 1;  } else {high = mid - 1; }}// 返回不大于目标值的最大行索引return high;  // 这里返回high,因为high指向的是不大于目标值的最大行索引或未找到返回-1}public boolean binarySearchRow(int[] row, int target) {int low = 0, high = row.length - 1;while (low <= high) {int mid = (high - low) / 2 + low;if (row[mid] == target) {return true;} else if (row[mid] > target) {high = mid - 1;} else {low = mid + 1;}}return false;}
}

二分查找模板巧记,先写好数组中的左右边界值,然后while (low <= high),接着写mid的求值 int mid = (high - low) / 2 + low,再到判断,若目标值偏大往大的找即low指针右移,若目标值偏小往小的找即high指针左移,最后当low跟high重叠时对当前元素做判断,返回值依题而定。

相关文章:

力扣 搜索二维矩阵

二分查找&#xff0c;闭区间与开区间的不同解法。 题目 乍一看&#xff0c;不是遍历一下找到元素就可以了。 class Solution {public boolean searchMatrix(int[][] matrix, int target) {for (int[] ints : matrix) {for (int ans : ints) {if (ans target) return true;}}…...

JavaScript 操作符与表达式

Hi, 我是布兰妮甜&#xff0c;编写流畅、愉悦用户体验的程序员。JavaScript 是一种功能强大且灵活的编程语言&#xff0c;广泛应用于前端和后端开发。它提供了一系列丰富的操作符和表达式来处理数据、执行逻辑判断以及控制程序流程。理解这些概念对于编写高效、可读性强的代码至…...

深度学习 Pytorch 张量(Tensor)的创建和常用方法

1 张量的基本创建及其类型 和Numpy中的array一样&#xff0c;张量的本质也是结构化地组织了大量的数据。 并且在实际操作中&#xff0c;张量的创建和基本功能也与其非常类似。 1.1 张量(Tensor)函数创建方法 张量的最基本创建方法和Numpy中创建Array的格式一致。 # Numpy创建…...

在VMwareFusion中使用Ubuntu

在VMwareFusion使用Ubuntu 在VMwareFusion使用Ubuntu背景在VMwareFusion虚拟机里使用Ubuntu1、集成桌面工具2、主机和虚拟机之间共享剪贴板内容3、设置root用户密码4、设置静态ip4.1、静态ip和动态ip的区别4.2、查看当前ip4.2、linux网络配置文件所在位置4.3、基于ubuntu22.04.…...

%.*s——C语言中printf 函数中的一种格式化输出方式

在C语言中&#xff0c;%.*s 是 printf 函数中的一种格式化输出方式&#xff0c;用于控制字符串的输出长度。具体来说&#xff0c;%.*s 中的 * 表示输出宽度&#xff08;即最多输出的字符数&#xff09;是一个变量&#xff0c;这个变量的值在运行时通过 printf 函数的参数传递。…...

基于微信小程序的摄影竞赛系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

hydra破解密码

hydra九头蛇是常用的密码破解工具 1、破解centos ssh密码 hydra -l root -P password.txt ssh://192.168.1.107:2222 hydra -l root -P password.txt -s 2222 192.168.1.107 ssh2、破解ftp hydra -l allen -P e:\aa.txt ftp://127.0.0.1 hydra -l allen -P e:\aa.txt ftp:…...

JAVA之外观模式

外观模式&#xff0c;又称门面模式&#xff0c;是一种结构型设计模式&#xff0c;旨在为复杂的子系统提供一个统一且简化的接口。通过这一模式&#xff0c;客户端可以更加便捷地与子系统交互&#xff0c;而无需深入了解其内部结构和实现细节。外观模式不仅简化了客户端的使用&a…...

如何选择合适的服务器?服务器租赁市场趋势分析

服务器租赁市场概览 服务器租赁 market可以分为两种类型&#xff1a;按小时、按月和按年&#xff0c;每种模式都有其特点和适用场景&#xff0c;按小时租赁是最经济实惠的选择&#xff0c;适用于短期需求&#xff1b;按月租赁则适合中长期使用&#xff1b;而按年租赁则是最灵活…...

CentOS 下载软件时报Error: Failed to synchronize cache for repo ‘AppStream‘解决方法

下载软件时出现以下问题 直接把CentOS-AppStream.repo改个名字就行 cd /etc/yum.repos.d/ mv CentOS-AppStream.repo CentOS-AppStream.repo.bak就可以了 解决思路 把AI问遍&#xff0c;无人会&#xff0c;解决法 想要下载软件通通失败了&#xff0c;解决方法当然是问AI&am…...

鲍厚霖:引领AI广告创新,搭建中美合作桥梁

2024年是鲍厚霖和她领导的超能S咨询公司(Triple S AI)收获颇丰的一年。这一年中,她以卓越的战略眼光和创新能力,为中美教育、文化与技术的深度融合注入了新的活力。2025年,Triple S AI计划推出全新2.0版本平台,进一步深化人工智能驱动的营销与文化合作领域,推动产业变革与社会福…...

学习记录1

[SUCTF 2019]EasyWeb 直接给了源代码&#xff0c;分析一下 <?php function get_the_flag(){// webadmin will remove your upload file every 20 min!!!! $userdir "upload/tmp_".md5($_SERVER[REMOTE_ADDR]);if(!file_exists($userdir)){mkdir($userdir);}if…...

【Gossip 协议】Golang的实现库Memberlist 库简介

Gossip 协议简介 Gossip 协议是一种分布式协议&#xff0c;用于在节点之间传播信息&#xff0c;常用于成员管理、故障检测、服务发现等场景。在这个协议中&#xff0c;每个节点定期与其他节点交换信息&#xff0c;最终保证所有节点达到一致的状态。它的工作原理类似于人群中的…...

LDD3学习7--硬件接口I/O端口(以short为例)

1 理论 1.1 基本概念 目前对外设的操作&#xff0c;都是通过寄存器。寄存器的概念&#xff0c;其实就是接口&#xff0c;访问硬件接口&#xff0c;有I/O端口通信和内存映射I/O (Memory-Mapped I/O)&#xff0c;I/O端口通信是比较老的那种&#xff0c;都是老的串口并口设备&am…...

openharmony电源管理子系统

电源管理子系统 简介目录使用说明相关仓 简介 电源管理子系统提供如下功能&#xff1a; 重启服务&#xff1a;系统重启和下电。系统电源管理服务&#xff1a;系统电源状态管理和休眠运行锁管理。显示相关的能耗调节&#xff1a;包括根据环境光调节背光亮度&#xff0c;和根…...

【Rust自学】13.4. 闭包 Pt.4:使用闭包捕获环境

13.4.0. 写在正文之前 Rust语言在设计过程中收到了很多语言的启发&#xff0c;而函数式编程对Rust产生了非常显著的影响。函数式编程通常包括通过将函数作为值传递给参数、从其他函数返回它们、将它们分配给变量以供以后执行等等。 在本章中&#xff0c;我们会讨论 Rust 的一…...

在 macOS 上,用命令行连接 MySQL(/usr/local/mysql/bin/mysql -u root -p)

根据你提供的文件内容&#xff0c;MySQL 的安装路径是 /usr/local/mysql。要直接使用 mysql 命令&#xff0c;你需要找到 mysql 可执行文件的路径。 在 macOS 上&#xff0c;mysql 客户端通常位于 MySQL 安装目录的 bin 子目录中。因此&#xff0c;完整的路径应该是&#xff1…...

mono3d汇总

lidar坐标系 lidar坐标系可以简单归纳为标准lidar坐标系和nucense lidar坐标系&#xff0c;参考链接。这个坐标系和车辆的ego坐标系是一致的。 标准lidar坐标系 opendet3d&#xff0c;mmdetection3d和kitt都i使用了该坐标系 up z^ x front| /| /left y <------ 0kitti采…...

K8S 节点选择器

今天我们来实验 pod 调度的 nodeName 与 nodeSelector。官网描述如下&#xff1a; 假设有如下三个节点的 K8S 集群&#xff1a; k8s31master 是控制节点 k8s31node1、k8s31node2 是工作节点 容器运行时是 containerd 一、镜像准备 1.1、镜像拉取 docker pull tomcat:8.5-jre8…...

【2024年华为OD机试】 (C卷,200分)- 反射计数(Java JS PythonC/C++)

一、问题描述 题目解析 题目描述 给定一个包含 0 和 1 的二维矩阵&#xff0c;一个物体从给定的初始位置出发&#xff0c;在给定的速度下进行移动。遇到矩阵的边缘时会发生镜面反射。无论物体经过 0 还是 1&#xff0c;都不影响其速度。请计算并给出经过 t 时间单位后&#…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...