当前位置: 首页 > news >正文

力扣 搜索二维矩阵

二分查找,闭区间与开区间的不同解法。

题目

乍一看,不是遍历一下找到元素就可以了。

class Solution {public boolean searchMatrix(int[][] matrix, int target) {for (int[] ints : matrix) {for (int ans : ints) {if (ans == target) return true;}}return false;}
}

可以通过的,但还是可以优化一下的。这题可以用二分的思路,可以把整个矩阵看成一大个数组,若将矩阵每一行拼接在上一行的末尾,则会得到一个升序数组,我们可以在该数组上二分找到目标元素。但是这种方法在每一行元素个数不一时会失效。

时间复杂度:O(logmn),空间复杂度:O(1)。

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int m = matrix.length, n = matrix[0].length;int low = 0, high = m * n - 1;while (low <= high) {int mid = (high - low) / 2 + low;int x = matrix[mid / n][mid % n];if (x < target) {low = mid + 1;} else if (x > target) {high = mid - 1;} else {return true;}}return false;}
}

以上为标准二分查找的写法,其中首尾做为边界,条件时while (low <= high),接着如果目标值偏大则在右边找,即low = mid + 1,反之,目标值偏小时往左边找,即 high = mid - 1,然后当low指针从左边到target时扫了一遍,当high指针从右边到target时扫了一遍,当两个指针重叠相遇时,进一步判断两个指针定住的数是不是目标数,然后退出循环。

这题还可以先对行二分,再对列二分,进行两次二分查找。每行的第一个元素大于前一行的第一个元素,矩阵第一列的元素是升序的。对矩阵的第一列的元素二分查找,找到最后一个不大于目标值的元素,然后在该元素所在行中二分查找目标值是否存在。

时间复杂度:O(logmn),空间复杂度:O(1)。

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int rowIndex = binarySearchFirstColumn(matrix, target);if (rowIndex < 0) {return false;}return binarySearchRow(matrix[rowIndex], target);}public int binarySearchFirstColumn(int[][] matrix, int target) {int low = -1, high = matrix.length - 1;while (low < high) {int mid = (high - low + 1) / 2 + low;if (matrix[mid][0] <= target) {low = mid;} else {high = mid - 1;}}return low;}public boolean binarySearchRow(int[] row, int target) {int low = 0, high = row.length - 1;while (low <= high) {int mid = (high - low) / 2 + low;if (row[mid] == target) {return true;} else if (row[mid] > target) {high = mid - 1;} else {low = mid + 1;}}return false;}
}

其中,用了一个左开右闭区间的二分查找,可以先进行扩充边界,然后条件改为while (low < high),接着low要设置为mid,退出的条件即当low跟high重叠时,此时的low是mid了,看是不是要找的target。当然,这题用左闭右开区间的二分查找也是类似,不过要注意以下返回值,要取到不大于目标值的最大行索引。

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int rowIndex = binarySearchFirstColumn(matrix, target);if (rowIndex < 0) {return false;}return binarySearchRow(matrix[rowIndex], target);}
public int binarySearchFirstColumn(int[][] matrix, int target) {int low = 0, high = matrix.length;  while (low < high) {  int mid = (high - low) / 2 + low;  if (matrix[mid][0] <= target) {  low = mid + 1;} else {  high = mid;  }}return high-1; 
}public boolean binarySearchRow(int[] row, int target) {int low = 0, high = row.length - 1;while (low <= high) {int mid = (high - low) / 2 + low;if (row[mid] == target) {return true;} else if (row[mid] > target) {high = mid - 1;} else {low = mid + 1;}}return false;}
}

然后,也可以用最经典的标准二分模板去写。

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int rowIndex = binarySearchFirstColumn(matrix, target);if (rowIndex < 0) {return false;}return binarySearchRow(matrix[rowIndex], target);}
public int binarySearchFirstColumn(int[][] matrix, int target) {// 初始化low为0,high为矩阵最后一行的索引int low = 0, high = matrix.length - 1;while (low <= high) {  // 当low不大于high时继续循环int mid = (high - low) / 2 + low;  // 计算中间位置// 如果中间位置的行的第一个元素小于或等于目标值,则该行及之后的行可能是候选行if (matrix[mid][0] <= target) {low = mid + 1;  } else {high = mid - 1; }}// 返回不大于目标值的最大行索引return high;  // 这里返回high,因为high指向的是不大于目标值的最大行索引或未找到返回-1}public boolean binarySearchRow(int[] row, int target) {int low = 0, high = row.length - 1;while (low <= high) {int mid = (high - low) / 2 + low;if (row[mid] == target) {return true;} else if (row[mid] > target) {high = mid - 1;} else {low = mid + 1;}}return false;}
}

二分查找模板巧记,先写好数组中的左右边界值,然后while (low <= high),接着写mid的求值 int mid = (high - low) / 2 + low,再到判断,若目标值偏大往大的找即low指针右移,若目标值偏小往小的找即high指针左移,最后当low跟high重叠时对当前元素做判断,返回值依题而定。

相关文章:

力扣 搜索二维矩阵

二分查找&#xff0c;闭区间与开区间的不同解法。 题目 乍一看&#xff0c;不是遍历一下找到元素就可以了。 class Solution {public boolean searchMatrix(int[][] matrix, int target) {for (int[] ints : matrix) {for (int ans : ints) {if (ans target) return true;}}…...

JavaScript 操作符与表达式

Hi, 我是布兰妮甜&#xff0c;编写流畅、愉悦用户体验的程序员。JavaScript 是一种功能强大且灵活的编程语言&#xff0c;广泛应用于前端和后端开发。它提供了一系列丰富的操作符和表达式来处理数据、执行逻辑判断以及控制程序流程。理解这些概念对于编写高效、可读性强的代码至…...

深度学习 Pytorch 张量(Tensor)的创建和常用方法

1 张量的基本创建及其类型 和Numpy中的array一样&#xff0c;张量的本质也是结构化地组织了大量的数据。 并且在实际操作中&#xff0c;张量的创建和基本功能也与其非常类似。 1.1 张量(Tensor)函数创建方法 张量的最基本创建方法和Numpy中创建Array的格式一致。 # Numpy创建…...

在VMwareFusion中使用Ubuntu

在VMwareFusion使用Ubuntu 在VMwareFusion使用Ubuntu背景在VMwareFusion虚拟机里使用Ubuntu1、集成桌面工具2、主机和虚拟机之间共享剪贴板内容3、设置root用户密码4、设置静态ip4.1、静态ip和动态ip的区别4.2、查看当前ip4.2、linux网络配置文件所在位置4.3、基于ubuntu22.04.…...

%.*s——C语言中printf 函数中的一种格式化输出方式

在C语言中&#xff0c;%.*s 是 printf 函数中的一种格式化输出方式&#xff0c;用于控制字符串的输出长度。具体来说&#xff0c;%.*s 中的 * 表示输出宽度&#xff08;即最多输出的字符数&#xff09;是一个变量&#xff0c;这个变量的值在运行时通过 printf 函数的参数传递。…...

基于微信小程序的摄影竞赛系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

hydra破解密码

hydra九头蛇是常用的密码破解工具 1、破解centos ssh密码 hydra -l root -P password.txt ssh://192.168.1.107:2222 hydra -l root -P password.txt -s 2222 192.168.1.107 ssh2、破解ftp hydra -l allen -P e:\aa.txt ftp://127.0.0.1 hydra -l allen -P e:\aa.txt ftp:…...

JAVA之外观模式

外观模式&#xff0c;又称门面模式&#xff0c;是一种结构型设计模式&#xff0c;旨在为复杂的子系统提供一个统一且简化的接口。通过这一模式&#xff0c;客户端可以更加便捷地与子系统交互&#xff0c;而无需深入了解其内部结构和实现细节。外观模式不仅简化了客户端的使用&a…...

如何选择合适的服务器?服务器租赁市场趋势分析

服务器租赁市场概览 服务器租赁 market可以分为两种类型&#xff1a;按小时、按月和按年&#xff0c;每种模式都有其特点和适用场景&#xff0c;按小时租赁是最经济实惠的选择&#xff0c;适用于短期需求&#xff1b;按月租赁则适合中长期使用&#xff1b;而按年租赁则是最灵活…...

CentOS 下载软件时报Error: Failed to synchronize cache for repo ‘AppStream‘解决方法

下载软件时出现以下问题 直接把CentOS-AppStream.repo改个名字就行 cd /etc/yum.repos.d/ mv CentOS-AppStream.repo CentOS-AppStream.repo.bak就可以了 解决思路 把AI问遍&#xff0c;无人会&#xff0c;解决法 想要下载软件通通失败了&#xff0c;解决方法当然是问AI&am…...

鲍厚霖:引领AI广告创新,搭建中美合作桥梁

2024年是鲍厚霖和她领导的超能S咨询公司(Triple S AI)收获颇丰的一年。这一年中,她以卓越的战略眼光和创新能力,为中美教育、文化与技术的深度融合注入了新的活力。2025年,Triple S AI计划推出全新2.0版本平台,进一步深化人工智能驱动的营销与文化合作领域,推动产业变革与社会福…...

学习记录1

[SUCTF 2019]EasyWeb 直接给了源代码&#xff0c;分析一下 <?php function get_the_flag(){// webadmin will remove your upload file every 20 min!!!! $userdir "upload/tmp_".md5($_SERVER[REMOTE_ADDR]);if(!file_exists($userdir)){mkdir($userdir);}if…...

【Gossip 协议】Golang的实现库Memberlist 库简介

Gossip 协议简介 Gossip 协议是一种分布式协议&#xff0c;用于在节点之间传播信息&#xff0c;常用于成员管理、故障检测、服务发现等场景。在这个协议中&#xff0c;每个节点定期与其他节点交换信息&#xff0c;最终保证所有节点达到一致的状态。它的工作原理类似于人群中的…...

LDD3学习7--硬件接口I/O端口(以short为例)

1 理论 1.1 基本概念 目前对外设的操作&#xff0c;都是通过寄存器。寄存器的概念&#xff0c;其实就是接口&#xff0c;访问硬件接口&#xff0c;有I/O端口通信和内存映射I/O (Memory-Mapped I/O)&#xff0c;I/O端口通信是比较老的那种&#xff0c;都是老的串口并口设备&am…...

openharmony电源管理子系统

电源管理子系统 简介目录使用说明相关仓 简介 电源管理子系统提供如下功能&#xff1a; 重启服务&#xff1a;系统重启和下电。系统电源管理服务&#xff1a;系统电源状态管理和休眠运行锁管理。显示相关的能耗调节&#xff1a;包括根据环境光调节背光亮度&#xff0c;和根…...

【Rust自学】13.4. 闭包 Pt.4:使用闭包捕获环境

13.4.0. 写在正文之前 Rust语言在设计过程中收到了很多语言的启发&#xff0c;而函数式编程对Rust产生了非常显著的影响。函数式编程通常包括通过将函数作为值传递给参数、从其他函数返回它们、将它们分配给变量以供以后执行等等。 在本章中&#xff0c;我们会讨论 Rust 的一…...

在 macOS 上,用命令行连接 MySQL(/usr/local/mysql/bin/mysql -u root -p)

根据你提供的文件内容&#xff0c;MySQL 的安装路径是 /usr/local/mysql。要直接使用 mysql 命令&#xff0c;你需要找到 mysql 可执行文件的路径。 在 macOS 上&#xff0c;mysql 客户端通常位于 MySQL 安装目录的 bin 子目录中。因此&#xff0c;完整的路径应该是&#xff1…...

mono3d汇总

lidar坐标系 lidar坐标系可以简单归纳为标准lidar坐标系和nucense lidar坐标系&#xff0c;参考链接。这个坐标系和车辆的ego坐标系是一致的。 标准lidar坐标系 opendet3d&#xff0c;mmdetection3d和kitt都i使用了该坐标系 up z^ x front| /| /left y <------ 0kitti采…...

K8S 节点选择器

今天我们来实验 pod 调度的 nodeName 与 nodeSelector。官网描述如下&#xff1a; 假设有如下三个节点的 K8S 集群&#xff1a; k8s31master 是控制节点 k8s31node1、k8s31node2 是工作节点 容器运行时是 containerd 一、镜像准备 1.1、镜像拉取 docker pull tomcat:8.5-jre8…...

【2024年华为OD机试】 (C卷,200分)- 反射计数(Java JS PythonC/C++)

一、问题描述 题目解析 题目描述 给定一个包含 0 和 1 的二维矩阵&#xff0c;一个物体从给定的初始位置出发&#xff0c;在给定的速度下进行移动。遇到矩阵的边缘时会发生镜面反射。无论物体经过 0 还是 1&#xff0c;都不影响其速度。请计算并给出经过 t 时间单位后&#…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》

&#x1f9e0; LangChain 中 TextSplitter 的使用详解&#xff1a;从基础到进阶&#xff08;附代码&#xff09; 一、前言 在处理大规模文本数据时&#xff0c;特别是在构建知识库或进行大模型训练与推理时&#xff0c;文本切分&#xff08;Text Splitting&#xff09; 是一个…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现&#xff0c;其目的是加强对string的底层了解&#xff0c;以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量&#xff0c;…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...

(12)-Fiddler抓包-Fiddler设置IOS手机抓包

1.简介 Fiddler不但能截获各种浏览器发出的 HTTP 请求&#xff0c;也可以截获各种智能手机发出的HTTP/ HTTPS 请求。 Fiddler 能捕获Android 和 Windows Phone 等设备发出的 HTTP/HTTPS 请求。同理也可以截获iOS设备发出的请求&#xff0c;比如 iPhone、iPad 和 MacBook 等苹…...