Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)
Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)
目录
- Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
1.Matlab实现Transformer+BO-SVR多变量回归预测,Transformer+BO-SVR/Bayes-SVR(程序可以作为论文创新支撑,目前尚未发表);
2.Transformer提取特征后,贝叶斯算法选择最佳的SVM核函数参数c和g,运行环境为Matlab2023b及以上;
3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;
在预测任务中,结合Transformer和支持向量回归(SVR)的方法可以充分利用Transformer在特征提取上的强大能力和SVR在回归任务中的准确性。以下是一个详细的步骤,使用Transformer提取特征,然后结合贝叶斯优化(BO)来选择最佳的SVM核函数参数c(正则化参数)和g(gamma参数,用于RBF核)。
步骤1:数据准备
数据收集:收集并准备数据。
数据预处理:归一化数据,以确保模型训练的有效性。
步骤2:使用Transformer提取特征
构建Transformer模型:
根据数据维度和预测需求,设计一个适合的Transformer模型。包括输入嵌入层、多头注意力机制、位置编码等。
训练Transformer模型:
使用数据训练Transformer模型,目标是学习数据的潜在表示或特征。
特征提取:
从训练好的Transformer模型中提取特征。
步骤3:贝叶斯优化支持向量回归(BO-SVR)
初始化SVR模型:
选择一个支持向量回归模型,确定使用的核函数(RBF核)。
定义优化目标:
确定一个损失函数来衡量SVR模型的性能。
贝叶斯优化过程:
使用贝叶斯优化算法(如高斯过程优化)来搜索最优的c和g参数。
贝叶斯优化通过迭代地选择参数组合、评估模型性能并更新参数空间的概率分布来工作。在每次迭代中,算法会根据当前的最佳估计选择下一个最有希望的参数组合进行评估。
实施贝叶斯优化:
使用找到的最优c和g参数训练最终的SVR模型。
评估模型在验证集或测试集上的性能。
步骤4:Transformer+BO-SVR/Bayes-SVR整合
整合流程:将Transformer特征提取步骤和BO-SVR步骤整合到一个完整的预测流程中。
模型评估:使用交叉验证或独立测试集评估整个流程的性能。
注意事项
数据划分:确保在优化SVR模型时,使用交叉验证。
程序设计
- 完整程序和数据获取方式私信博主回复Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)。
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);% 格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);
end%% 构建的Transformer模型
outputSize = 1; %数据输出y的维度
numChannels = f_;
maxPosition = 256;
numHeads = 4;
numKeyChannels = numHeads*32;layers = [
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
相关文章:

Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)
Transformer创新模型!TransformerBO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab) 目录 Transformer创新模型!TransformerBO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab࿰…...

大疆机场及无人机上云
最近基于大疆上云api进行二次开发,后面将按照开发步骤对其进行说明!...

用Cursor生成一个企业官网前端页面(生成腾讯、阿里官网静态页面)
用Cursor生成一个企业官网前端页面 第一版: <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><…...
Java 数组排序
目录 1.Java冒泡排序(Bubble Sort) 1.冒泡排序 2.冒泡排序的算法原理 3.冒泡排序的复杂度和性能 4.形成代码 2.Java快速排序(Quick Sort) 3.Java归并排序(Merge Sort) 4.Java选择排序(S…...
LeetCode:78.子集
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:78.子集 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集…...
【经济学通识——国债】
国债 政府的支出一般大于收入,会有赤字 于是会向全社会去借钱。美国债务上限,象征性的(一直上调)全球政府债务都在上升。 亚当斯密觉得市场竞争最有效率 市场自由竞争会不可避免的出现萧条。于是,凯恩斯提出政府调节…...
联合体(Union)
联合体(Union)简介 联合体(union)是 C 和 C 编程语言中的一种数据结构,和结构体(struct)类似,但有一些重要的区别。 定义 联合体中的所有成员共享同一段内存,也就是说…...

Kibana:ES|QL 编辑器简介
作者:来自 Elastic drewdaemon ES|QL 很重要 💪 正如你可能已经听说的那样,ES|QL 是 Elastic 的新查询语言。我们对 ES|QL 寄予厚望。它已经很出色了,但随着时间的推移,它将成为与 Elasticsearch 中的数据交互的最强大…...
【工具】curl工具
curl 官网: https://curl.se/ github: https://github.com/curl?languagec curl 命令 所有参数介绍在线文档 简单使用教程 邮件发送命令 注: 支持SMTP(或者POP3)协议,curl的版本必须高于7.20(含&…...

idea中远程调试中配置的参数说明
Ⅰ 远程调试中配置的端口号与服务本身端口号区别 一、远程调试中配置端口号的作用 在 IDEA 中进行远程调试时配置的端口号主要用于建立开发工具(如 IDEA)和远程服务之间的调试连接。当你启动远程调试时,IDEA 会监听这个配置的端口号…...

JavaWeb 前端基础 html + CSS 快速入门 | 018
今日推荐语 指望别人的救赎,势必走向毁灭——波伏娃 日期 学习内容 打卡编号2025年01月17日JavaWeb 前端基础 html CSS018 前言 哈喽,我是菜鸟阿康。 今天 正式进入JavaWeb 的学习,简单学习 html CSS 这2各前端基础部分&am…...

Debian 设定 tomcat 定时重启
目录 背景 过程记录 1、编辑sh文件,完成重启功能 2、设置sh的可执行权限 编辑 3、设置定时任务 背景 在Debian 12系统中,原本部署了两个tomcat,结果总是遇到CPU飙升到影响应用正常使用的程度,找了很久原因还是没有找到。 …...

【QT】: 初识 QWidget 控件 | QWidget 核心属性(API) | qrc 文件
🔥 目录 1. 控件概述 控件体系的发展阶段 2. QWidget 核心属性 2.1 核心属性概览2.2 用件可用(Enabled) 2.3 坐标系(Geometry) **实例 1: 控制按钮的位置**实例 2: 表白 程序 2.4 窗口标题(windowTiltle&a…...

下载文件,浏览器阻止不安全下载
背景: 在项目开发中,遇到需要下载文件的情况,文件类型可能是图片、excell表、pdf、zip等文件类型,但浏览器会阻止不安全的下载链接。 效果展示: 下载文件的两种方式: 一、根据接口的相对url,拼…...

基于javaweb的SpringBoot景区旅游管理系统设计和实现(源码+文档+部署讲解)
个人名片 🔥 源码获取 | 毕设定制| 商务合作:《个人名片》 ⛺️心若有所向往,何惧道阻且长 文章目录 个人名片运行环境技术栈适用功能说明使用说明 运行环境 Java≥8、MySQL≥5.7 1.运行环境:最好是java jdk 1.8,我们在这个平台…...

【17】Word:林楚楠-供应链❗
目录 题目 NO1.2 NO3 NO4 NO5 NO6 NO7 NO89 题目 NO1.2 另存为:文件→另存为→文档→文件名/考生文件夹F12/FnF12→文件名/考生文件夹 插入→分节符→文本框→输入文件→排版_居中对齐→间距/回车去掉文本框的边框→选中文本框→格式:形状轮廓…...
Transformer中基于惊喜的遗忘机制
在语言建模任务上,拥有 760M 参数的 Titans(MAC) 在 WikiText 上达到了 19.93 的困惑度,显著优于同等规模的 Transformer++(25.21) 和 Mamba2(22.94)。在常识推理任务上,Titans 在包括 PIQA、HellaSwag、WinoGrande 等 9 个基准测试中的平均准确率达到 52.51%,超过了现…...

从玩具到工业控制--51单片机的跨界传奇【3】
在科技的浩瀚宇宙中,51 单片机就像一颗独特的星辰,散发着神秘而迷人的光芒。对于无数电子爱好者而言,点亮 51 单片机上的第一颗 LED 灯,不仅仅是一次简单的操作,更像是开启了一扇通往新世界的大门。这小小的 LED 灯&am…...

基于机器学习的用户健康风险分类及预测分析
完整源码项目包获取→点击文章末尾名片! 背景描述 在这个日益注重健康与体能的时代,健身已成为许多人追求健康生活的重要组成部分。 本数据集包含若干健身房会员的详细信息,包括年龄、性别、体重、身高、心率、锻炼类型、身体脂肪比例等多项关…...

CF 641A.Little Artem and Grasshopper(Java实现)
题目分析 蚂蚱会在n个房间中根据既定房间规则向固定方向跳跃固定长度,试问是否能够跳出这个长度(即落点位置在0或n1) 思路分析 输入n就有n个房间,n套规则(固定方向和跳跃距离),蚂蚱到哪个房间就…...

第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...