当前位置: 首页 > news >正文

STL-list类

 list的介绍和使用

         list的介绍

list的介绍list的介绍

        list是双向循环链表

          list的使用 

        构造

list(size_t n,const value_type& val = value_type())构造的list中包含n个值为val的元素
list()构造空list
lis(const list& x)拷贝构造函数
list(inputlerator first,inputlterator last)用[first,list)的区间中元素构造list

int main()
{list<int> A;list<int> B(5,1);list<int> C(B);list<int> D(C.begin(),C.end());return 0;
}

        迭代器

begin

返回第一个元素的迭代器

end返回最后一个元素的下一个位置的迭代器
rbegin返回最后一个元素的迭代器
rend返回第一个元素的上一个位置的迭代器

 

 

 

 

begin与end是一组的正向地迭代器 ++向后移动

rbegin与rend是反向迭代器 ++向前移动

int main()
{int num[10] = { 1,2,3,4,5,6,7,8,9,10 };list<int> a(num,num+10);for (auto it = a.begin(); it != a.end(); it++){cout << *it << ' ';}cout << endl;for (auto rit = a.rbegin(); rit != a.rend(); rit++){cout << *rit << ' ';}cout << endl;for (auto ait : a){cout << ait;}return 0;
}
empty检测list是否为空
size返回list中有效节点数
front返回list地第一个节点中值的引用
back返回list最后一个节点中值的引用

 

 

 

 

 

 

push_front头插
pop_front头删
push_back尾插
pop_back尾删
insert在pos位置插入
erase删除pos位置元素
swap交换元素
clear清空有效元素

 

 

 

 

 

 

 

 

 

int main()
{list<int> a;a.push_back(1);a.push_front(0);for (auto it : a)cout << it;a.pop_front();for (auto it : a)cout << it;a.push_front(3);swap(a.front(),a.back());for (auto it : a)cout << it;swap(a.front(), a.back());for (auto it : a)cout << it;a.clear();cout << a.size();return 0;
}

迭代器失效

只有删除某个节点后,迭代器的位置还指向被删除节点时候才失效 

模拟实现 

 

#include<iostream>
using namespace std;namespace mylist
{template<class T>struct ListNode{ListNode(const T& val = T()):_val(val),_pPre(nullptr),_pNext(nullptr){}ListNode<T>* _pPre;ListNode<T>* _pNext;T _val;};template<class T, class Ref, class Ptr>class ListIterator{typedef ListNode<T>* PNode;typedef ListIterator<T, Ref, Ptr> Self;public:PNode node(){return _pNode;}ListIterator(PNode pNode = nullptr):_pNode(pNode){}ListIterator(const Self& l):_pNode(l._pNode){}T& operator*(){return _pNode->_val;}T* operator->(){return _pNode;}Self& operator++(){_pNode = _pNode->_pNext;return *this;}Self operator++(int){Self p = *this;_pNode = _pNode->_pNext;return Self(p);}Self& operator--(){_pNode = _pNode->_pPre;return *this;}Self& operator--(int){Self p = *this;_pNode = _pNode->_pPre;return Self(p);}bool operator!=(const Self& l) const{return _pNode != l._pNode;}bool operator==(const Self& l) const{return _pNode == l._pNode;}private:PNode _pNode;};template<class Iterator, class Ref, class Ptr>struct Reverse_iterator{typedef Reverse_iterator<Iterator, Ref, Ptr> Self;Reverse_iterator(Iterator it):_it(it){}Ref operator*(){Iterator t(_it);return *t;}Ptr operator->(){return &(operator*());}//// 迭代器支持移动Self& operator++(){Self temp(*this);--_it;return temp;}Self operator++(int){Self temp(*this);--_it;return temp;}Self& operator--(){++_it;return *this;}Self operator--(int){Self temp(*this);++_it;return temp;}bool operator!=(const Self& l) const{return _it != l._it;}bool operator==(const Self& l) const{return _it != l._it;}Iterator _it;};template<class T>class list{typedef ListNode<T> Node;typedef Node* PNode;public:typedef ListIterator<T, T&, T*> iterator;typedef ListIterator<T, const T&, const T&> const_iterator;typedef Reverse_iterator<iterator, const T&, const T*> const_Reverse_iterator;typedef Reverse_iterator<iterator,T&,T*> Reverse_iterator;public:list(){CreateHead();}list(int n, const T& value = T()){CreateHead();while(n--)push_front(value);}template <class Iterator>list(Iterator first, Iterator last){CreateHead();while (first != last){push_back(*first);first++;}}list(const list<T>& l){CreateHead();for (auto it : l){push_back(it);}}list<T>& operator=(const list<T>& l){list(l);}~list(){clear();delete _pHead;_pHead = nullptr;}///// List Iteratoriterator begin() { return iterator(_pHead->_pNext); }iterator end() {return iterator(_pHead);};const_iterator begin() const { return const_iterator(_pHead->_pNext); }const_iterator end() const { return const_iterator(_pHead); }Reverse_iterator rbegin(){return Reverse_iterator(--end());}Reverse_iterator rend(){return Reverse_iterator(--begin());}const_Reverse_iterator rbegin()const{return const_Reverse_iterator(--end());}const_Reverse_iterator rend()const{return const_Reverse_iterator(--begin());}///// List Capacitysize_t size()const{size_t s = 0;const_iterator it = this->begin();while (it != this->end()){it++;s++;}return s;}bool empty()const{return _pHead == _pHead->_pNext;}// List AccessT& front() { return _pHead->_pNext->_val; }const T& front()const { return _pHead->_pNext->_val; }T& back() { return _pHead->_pPre->_val; }const T& back()const { return _pHead->_pPre->_val; }// List Modifyvoid push_back(const T& val) { insert(end(), val); }void pop_back() { erase(--end()); }void push_front(const T& val) { insert(begin(), val); }void pop_front() { erase(begin()); }// 在pos位置前插入值为val的节点iterator insert(iterator pos, const T& val){PNode tmp = new Node(val);tmp->_pNext = pos.node();tmp->_pPre = pos.node()->_pPre;pos.node()->_pPre->_pNext = tmp;pos.node()->_pPre = tmp;return iterator(tmp);}// 删除pos位置的节点,返回该节点的下一个位置iterator erase(iterator pos){PNode it = pos.node()->_pNext;PNode p = pos.node();p->_pNext->_pPre = p->_pPre;p->_pPre->_pNext = p->_pNext;delete p;return iterator(it);}void clear(){while (_pHead != _pHead->_pNext){pop_front();}}void swap(list<T>& l){PNode tmp = l._pHead;l._pHead = _pHead;_pHead = tmp;}private:void CreateHead(){_pHead = new Node;_pHead->_pNext = _pHead;_pHead->_pPre = _pHead;}PNode _pHead;};
};

相关文章:

STL-list类

list的介绍和使用 list的介绍 list的介绍list的介绍 list是双向循环链表 list的使用 构造 list(size_t n,const value_type& val value_type())构造的list中包含n个值为val的元素list()构造空listlis(const list& x)拷贝构造函数list(inputlerator first,inputlter…...

Hanlp的学习

参考&#xff1a;HanLP 自然语言处理使用总结-CSDN博客 参考&#xff1a;Sprint Boot 工程中HanLP配置相对路径&#xff0c;始终有问题的解决方案_springboot hanlp-CSDN博客 <!--hanlp 依赖--><dependency><groupId>com.hankcs</groupId><artifa…...

Excel中函数SIGN()的用法

Excel中函数SIGN的用法 1. 函数详细讲解1.1 函数解释1.2 使用格式1.3 参数定义1.4 要点 2. 实用演示示例2.1 函数需求2.2 公式编写 3. 注意事项4. 文档下载5. 其他文章6. 获取全部Excel练习素材快来试试吧&#x1f970; 函数练习素材&#x1f448;点击即可进行下载操作操作注意…...

如何将本地电脑上的文件夹设置为和服务器的共享文件夹

将本地电脑上的文件夹设为与服务器共享的文件夹&#xff0c;通常是在本地开启文件共享&#xff0c;并配置相应的权限&#xff0c;使服务器可以访问该文件夹。以下以 Windows 系统为例说明具体操作步骤&#xff1a; 一、在本地电脑上设置共享文件夹 选择文件夹 找到需要共享的文…...

智能建筑时代的核心选择——基于SAIL-RK3576核心板的AI边缘计算网关方案

随着智能建筑技术的不断发展&#xff0c;建筑设备正日益向“智慧化”迈进。传统的建筑管理系统往往依赖中央服务器和云端平台进行数据处理和控制&#xff0c;但在实时监控、安防及能耗管理等关键环节&#xff0c;延迟和数据安全问题依然存在。此外&#xff0c;物联网设备数量激…...

08、如何预防SQL注入

目录 1、分析及其存在哪些危险 2、预防SQL注入 1、分析及其存在哪些危险 原理: SQL 注入是一种常见的网络攻击手段,攻击者通过在用户输入中插入恶意的 SQL 语句,利用程序对用户输入处理不当的漏洞,使恶意 SQL 语句被数据库服务器执行。 通常发生在应用程序将用户输入直接拼…...

【时时三省】(C语言基础)柔性数组

山不在高&#xff0c;有仙则名。水不在深&#xff0c;有龙则灵。 ----CSDN 时时三省 柔性数组 C99中&#xff0c;结构中的最后一个元素允许是未知大小的数组&#xff0c;这就叫做 柔性数组 成员。 例如&#xff1a; 这里把arr就称为柔性数组 有的编译器上是写成int arr&…...

mongodb详解二:基础操作

基础操作 数据库操作collection操作查看表插入数据查找数据 数据库操作 1.创建数据库 use test_db;如果没有数据库&#xff0c;use命令会新建一个&#xff1b;有的话&#xff0c;会切换到这个数据库 2.查看数据库 show dbs;collection操作 查看表 show tables;插入数据 …...

【数据分享】1929-2024年全球站点的逐月平均气温数据(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据&#xff0c;气象指标包括气温、风速、降水、湿度等指标&#xff0c;其中又以气温指标最为常用&#xff01;说到气温数据&#xff0c;最详细的气温数据是具体到气象监测站点的气温数据&#xff01;本次我们为大家带来的就是具体到气象监…...

管理口令安全和资源(一)

学习目标 Manage passwords using profiles: 使用配置文件&#xff08;profiles&#xff09;来管理密码。这意味着你应该能够设置和修改密码策略&#xff0c;比如密码的复杂性、有效期、尝试次数限制等。在Oracle数据库中&#xff0c;配置文件是一组可以应用于所有用户的预定义…...

【Linux】【Vim】vim编辑器的用法

一、vim简介 Vim是一款功能强大且高度可定制的文本编辑器&#xff0c;广泛应用于Linux 和 Unix系统中。 它不仅继承了vi编辑器的所有特性&#xff0c;还增加了许多新的功能&#xff0c;如语法高亮、代码折叠、多级撤销等。 Vim有三种主要的工作模式&#xff1a; 命令模式&am…...

Golang Gin系列-3:Gin Framework的项目结构

在Gin教程的第3篇&#xff0c;我们将讨论如何设置你的项目。这不仅仅是把文件扔得到处都是&#xff0c;而是要对所有东西的位置做出明智的选择。相信我&#xff0c;这些东西很重要。如果你做得对&#xff0c;你的项目会更容易处理。当你以后不再为了找东西或添加新功能而绞尽脑…...

LabVIEW实车四轮轮速信号再现系统

开发了一个基于LabVIEW的实车四轮轮速信号再现系统。该系统解决现有电机驱动传感器成本高、重复性差、真实性差和精度低等问题&#xff0c;提供一种高精度、低成本的轮速信号再现解决方案。 项目背景 ABS轮速传感器在现代汽车安全系统中发挥着至关重要的作用。为保证其准确性和…...

2025.1.16——六、BabySQL 双写绕过|联合注入

题目来源&#xff1a;buuctf [极客大挑战 2019]BabySQL 1 目录 一、打开靶机&#xff0c;分析已知信息 二、手工注入解题 step 1&#xff1a;万能密码 step 2&#xff1a;正常注入&#xff0c;判断字段数 step 3&#xff1a;绕过 step 4&#xff1a;查数据库 step 5&am…...

Spring Boot 下的Swagger 3.0 与 Swagger 2.0 的详细对比

先说结论&#xff1a; Swgger 3.0 与Swagger 2.0 区别很大&#xff0c;Swagger3.0用了最新的注释实现更强大的功能&#xff0c;同时使得代码更优雅。 就个人而言&#xff0c;如果新项目推荐使用Swgger 3.0&#xff0c;对于工具而言新的一定比旧的好&#xff1b;对接于旧项目原…...

【已解决】git clone报错:Failed to connect to github.com port 443: Timed out

1.问题原因1 报错信息1&#xff1a; fatal: unable to access https://github.com/microsoft/xxx/: Failed to connect to github.com port 443: Timed out 报错信息2&#xff1a; fatal: unable to access https://github.com/xxx/xx/: OpenSSL SSL_read: Connection was …...

Qt 程序 DPI 适配方法归纳

方案1&#xff1a;通过 Windows api 处理 缺点&#xff1a;放大之后界面会模糊。 通过调用api实现 #include <ShellScalingAPI.h> #pragma comment(lib, "Shcore.lib")HRESULT hr SetProcessDpiAwareness(PROCESS_SYSTEM_DPI_AWARE);或者使用qt.conf 实现 在…...

AI刷题-小R的随机播放顺序、不同整数的计数问题

目录 一、小R的随机播放顺序 问题描述 测试样例 解题思路&#xff1a; 问题理解 数据结构选择 算法步骤 最终代码&#xff1a; 运行结果&#xff1a; 二、 不同整数的计数问题 问题描述 测试样例 解题思路&#xff1a; 问题理解 数据结构选择 算法步骤 最终…...

windows 极速安装 Linux (Ubuntu)-- 无需虚拟机

1. 安装 WSL 和 Ubuntu 打开命令行&#xff0c;执行 WSL --install -d ubuntu若报错&#xff0c;则先执行 WSL --update2. 重启电脑 因安装了子系统&#xff0c;需重启电脑才生效 3. 配置 Ubuntu 的账号密码 打开 Ubuntu 的命令行 按提示&#xff0c;输入账号&#xff0c;密…...

【影刀_常规任务计划_API调用】

影刀_常规任务计划 1、在常规任务计划被关闭或者设置了定时任务的情况下&#xff08;非手动执行&#xff09;&#xff0c;通过API的方式启动任务&#xff0c;任务仍然可以被正常执行。 2、如果在常规任务计划里面应用中填写的参数的话&#xff0c; 如果通过api执行&#xff…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...

CppCon 2015 学习:REFLECTION TECHNIQUES IN C++

关于 Reflection&#xff08;反射&#xff09; 这个概念&#xff0c;总结一下&#xff1a; Reflection&#xff08;反射&#xff09;是什么&#xff1f; 反射是对类型的自我检查能力&#xff08;Introspection&#xff09; 可以查看类的成员变量、成员函数等信息。反射允许枚…...