【数据分享】1929-2024年全球站点的逐月平均气温数据(Shp\Excel\免费获取)
气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标,其中又以气温指标最为常用!说到气温数据,最详细的气温数据是具体到气象监测站点的气温数据!本次我们为大家带来的就是具体到气象监测站点的数据——1929-2024年全球气象站点的逐月平均气温数据!
原始数据来源于美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI),原始数据以华氏度为单位,数据格式为csv,缺失数据用9999.9表示,2024年的数据为1月1号——12月31号。为了方便大家使用,我们对原始数据进行了一些处理,包括:①气温单位转为摄氏度;②处理得到了Shp和Excel两种数据格式;③对于Excel格式,将缺失数据表示为空值,对于Shp格式,缺失值依然用9999.9表示;④基于当月所有天数的气温通过求平均值得到月平均气温。该数据的其他重要信息包括数据坐标为GCS_WGS_1984,以2024年为例全球有12159个气象观测站点,具体的数据处理方式会在下文详细介绍!
大家可以在公众号回复关键词 536 免费获取该数据!无需转发文章,直接获取!以下为数据的详细介绍:
01 数据预览
该数据提供Shp和Excel两种数据格式,由于是逐月平均气温数据,又有96个年份,数据条数非常多,难以将所有年份保存在一个文件中。我们将每一年的数据保存为一个Shp文件和一个Excel文件,一共有96个年份,也就是有96个Shp文件和96个Excel文件。
我们先来看一下Excel格式的数据,每个Excel文件中包含有该年12个月每月的全球所有气象站点的平均气温。

数据字段包括气象观测站点的编号(STATION)、气象观测站点的名称(NAME)、纬度(LATITUDE)和经度(LONGITUDE)以及每月平均气温数据(例如2024-01)。我们以2024年气象观测站点的每月平均气温数据为例来预览一下:

接下来我们来看一下Shp格式的数据,同样每个Shp文件中都包含该年12个月每月的全球所有气象站点的平均气温。

Shp格式数据的具体属性和Excel数据相同,我们以2024年气象站点的每月平均气温数据为例来预览一下:

02 数据来源
数据来源于美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI),网址为:https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/,包括了1929—2024年的气象数据,大家可以自己去该网站下载原始数据!

03 数据处理说明
1.合并处理:
从NCEI网站下载到的原始csv数据,每1个csv包含某个特定站点1年内所有的日均气温,按天记录,但并不全是365天,有的300多天,有的只有十几天。我们按照年份将每年涉及到的所有气象观测站点的每日平均气温数据进行合并处理,最终得到以年份命名的1929-2024年全球范围气象站点的逐日平均气温数据。
2.平均处理:
然后基于所有站点的逐日平均气温数值,我们求得每月所有天数的日均气温数据的平均值,以此分别得到所有站点的逐月平均气温数据!
3.单位换算:
将华氏度转化为摄氏度单位,数据处理公式为摄氏度 = (华氏度 - 32°F) ÷ 1.8进行换算。
4.空值处理:
原始csv数据中的缺失值用数字9999.9表示!在处理时,Excel格式文件用空值表示数据缺失;由于Shp文件会自动把空值识别为0,为区分空值与0度气温,Shp中仍保留数字9999.9表示数据缺失,特此说明!
5.站点数量说明:
每一年的站点数并不相同,基本是越新的年份全球气象站点数越多,2024年有12159个,早些年份的气象站点较少。有一点需要注意,对于缺失经纬度信息的站点,Excel中进行保留,其经纬度信息为空值。Shp中则将缺失经纬度信息的站点进行了删除。所以存在Excel和Shp中站点数量不一致的情况,例如2024年Shp中的站点个数为12121,Excel中的站点数量为12159。
04 数据获取
如有数据需求,欢迎点击下方名片链接,关注我们并咨询获取~
相关文章:
【数据分享】1929-2024年全球站点的逐月平均气温数据(Shp\Excel\免费获取)
气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标,其中又以气温指标最为常用!说到气温数据,最详细的气温数据是具体到气象监测站点的气温数据!本次我们为大家带来的就是具体到气象监…...
管理口令安全和资源(一)
学习目标 Manage passwords using profiles: 使用配置文件(profiles)来管理密码。这意味着你应该能够设置和修改密码策略,比如密码的复杂性、有效期、尝试次数限制等。在Oracle数据库中,配置文件是一组可以应用于所有用户的预定义…...
【Linux】【Vim】vim编辑器的用法
一、vim简介 Vim是一款功能强大且高度可定制的文本编辑器,广泛应用于Linux 和 Unix系统中。 它不仅继承了vi编辑器的所有特性,还增加了许多新的功能,如语法高亮、代码折叠、多级撤销等。 Vim有三种主要的工作模式: 命令模式&am…...
Golang Gin系列-3:Gin Framework的项目结构
在Gin教程的第3篇,我们将讨论如何设置你的项目。这不仅仅是把文件扔得到处都是,而是要对所有东西的位置做出明智的选择。相信我,这些东西很重要。如果你做得对,你的项目会更容易处理。当你以后不再为了找东西或添加新功能而绞尽脑…...
LabVIEW实车四轮轮速信号再现系统
开发了一个基于LabVIEW的实车四轮轮速信号再现系统。该系统解决现有电机驱动传感器成本高、重复性差、真实性差和精度低等问题,提供一种高精度、低成本的轮速信号再现解决方案。 项目背景 ABS轮速传感器在现代汽车安全系统中发挥着至关重要的作用。为保证其准确性和…...
2025.1.16——六、BabySQL 双写绕过|联合注入
题目来源:buuctf [极客大挑战 2019]BabySQL 1 目录 一、打开靶机,分析已知信息 二、手工注入解题 step 1:万能密码 step 2:正常注入,判断字段数 step 3:绕过 step 4:查数据库 step 5&am…...
Spring Boot 下的Swagger 3.0 与 Swagger 2.0 的详细对比
先说结论: Swgger 3.0 与Swagger 2.0 区别很大,Swagger3.0用了最新的注释实现更强大的功能,同时使得代码更优雅。 就个人而言,如果新项目推荐使用Swgger 3.0,对于工具而言新的一定比旧的好;对接于旧项目原…...
【已解决】git clone报错:Failed to connect to github.com port 443: Timed out
1.问题原因1 报错信息1: fatal: unable to access https://github.com/microsoft/xxx/: Failed to connect to github.com port 443: Timed out 报错信息2: fatal: unable to access https://github.com/xxx/xx/: OpenSSL SSL_read: Connection was …...
Qt 程序 DPI 适配方法归纳
方案1:通过 Windows api 处理 缺点:放大之后界面会模糊。 通过调用api实现 #include <ShellScalingAPI.h> #pragma comment(lib, "Shcore.lib")HRESULT hr SetProcessDpiAwareness(PROCESS_SYSTEM_DPI_AWARE);或者使用qt.conf 实现 在…...
AI刷题-小R的随机播放顺序、不同整数的计数问题
目录 一、小R的随机播放顺序 问题描述 测试样例 解题思路: 问题理解 数据结构选择 算法步骤 最终代码: 运行结果: 二、 不同整数的计数问题 问题描述 测试样例 解题思路: 问题理解 数据结构选择 算法步骤 最终…...
windows 极速安装 Linux (Ubuntu)-- 无需虚拟机
1. 安装 WSL 和 Ubuntu 打开命令行,执行 WSL --install -d ubuntu若报错,则先执行 WSL --update2. 重启电脑 因安装了子系统,需重启电脑才生效 3. 配置 Ubuntu 的账号密码 打开 Ubuntu 的命令行 按提示,输入账号,密…...
【影刀_常规任务计划_API调用】
影刀_常规任务计划 1、在常规任务计划被关闭或者设置了定时任务的情况下(非手动执行),通过API的方式启动任务,任务仍然可以被正常执行。 2、如果在常规任务计划里面应用中填写的参数的话, 如果通过api执行ÿ…...
参数校验 Spring Validation框架
后端参数校验 解决:校验前端传入的参数是否符合预期 1、引入依赖 使用Spring Validation框架 <!-- validation参数校验框架--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validatio…...
Spring Boot 基础入门指南
Spring Boot 基础入门指南 引言 在当今快速发展的软件行业中,开发者们一直在寻找简化应用程序开发的方法。Spring Boot 应运而生,它旨在帮助开发者快速构建基于Spring框架的应用程序,同时尽可能减少配置工作。本文将带您了解Spring Boot的基…...
doc、pdf转markdown
国外的一个网站可以: Convert A File Word, PDF, JPG Online 这个网站免费的,算是非常厚道了,但是大文件上传多了之后会扛不住 国内的一个网站也不错: TextIn-AI智能文档处理-图像处理技术-大模型加速器-在线免费体验 https://…...
基于 HTML5 Canvas 制作一个精美的 2048 小游戏--day 1
基于 HTML5 Canvas 制作一个精美的 2048 小游戏 在这个快节奏的生活中,简单而富有挑战性的游戏总能给我们带来乐趣。2048 是一款受欢迎的益智游戏,不仅考验智力,还能让人回味无穷。今天,我带领大家将一起学习如何使用 HTML5 Canv…...
知识图谱入门(一)
最近在研究Graph RAG项目,因此对相关内容做个总结,首先从知识图谱开始,供大家参考。 知识图谱是结构化知识表示的一种形式,它将知识组织成一个多关系图,其中节点表示实体,边表示实体之间的关 系。知识图谱…...
springboot项目-基础数据回显
一.基础数据回显说明 微服务项目中由于从服务独立的角度考虑,对数据库做了分库的处理。对于基础数据表来说,各个服务都是需要的。项目中在使用基础数据时,往往是在sql中写连接然后获取基础数据的名称。例: select wi.name,bc.ci…...
LabVIEW实现油浸式变压器自主监测与实时报告
油浸式变压器广泛应用于电力系统中,尤其是在电力传输和分配领域。为了确保变压器的安全、稳定运行,及时监测其工作状态至关重要。传统的变压器监测方法通常依赖人工巡检和定期检查,但这不能及时发现潜在的故障隐患,且效率较低。随…...
K8S 亲和性与反亲和性 深度好文
今天我们来实验 pod 亲和性。官网描述如下: 假设有如下三个节点的 K8S 集群: k8s31master 是控制节点 k8s31node1、k8s31node2 是工作节点 容器运行时是 containerd 一、镜像准备 1.1、镜像拉取 docker pull tomcat:8.5-jre8-alpine docker pull nginx…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
