当前位置: 首页 > news >正文

Python 调用 Ollama 库:本地大语言模型使用详解

ollama 是一个用于调用本地大语言模型(Large Language Models,LLMs)的 Python 库,旨在提供简单、高效的 API 接口,以便开发者能够方便地与本地的大语言模型进行交互。以下是关于如何在 Python 中使用 ollama 库的详细介绍。


1. 安装 Ollama

在使用库之前,请确保安装了 ollama。你可以通过以下命令安装:

pip install ollama

如果你尚未安装 Python 的包管理工具 pip,可以参考官方文档安装它。


2. Ollama 的主要功能

ollama 提供了与本地大语言模型(如 llama 或其他模型)交互的简单方法,主要是通过 API 调用模型来生成文本、回答问题等。


3. 使用 Ollama 的基本示例

以下是 ollama 的基本用法。

3.1 导入库

在 Python 脚本中,首先需要引入 ollama

 
import ollama

3.2 使用 Ollama 调用模型

Ollama 的核心功能是调用本地模型进行推理和生成。你可以通过以下方式调用模型:

生成文本示例

以下是一个简单的生成文本的例子:

import ollama# 调用 Ollama 使用大语言模型
response = ollama.generate(model="llama",  # 使用的模型名称prompt="你好,请简单介绍一下Python语言的特点。"
)# 打印生成的内容
print(response)
解析模型输出

返回的 response 通常是一个字符串,表示模型生成的结果。你可以对其进一步处理,比如格式化输出或存储到文件中。


3.3 设置自定义参数

调用模型时,可以传递一些自定义参数来调整模型的行为,比如最大生成长度、生成的温度等。

支持的参数

以下是一些常见的参数:

  • model:指定模型的名称(如 "llama" 等)。
  • prompt:输入提示。
  • temperature:影响生成内容的随机性,值范围为 0 到 1。
  • max_tokens:限制生成的最大 token 数量。
示例:自定义参数
response = ollama.generate(model="llama",prompt="为我写一首关于春天的诗。",temperature=0.7,  # 生成时的随机性max_tokens=100    # 限制生成的最大长度
)print(response)

3.4 使用自定义模型

如果你已经在本地训练了自定义模型,或者下载了其他模型,可以通过指定模型路径来使用它。

 
response = ollama.generate(model="/path/to/your/model",  # 指定本地模型路径prompt="如何学习机器学习?"
)print(response)

4. 集成流式生成

在某些场景下,你可能希望逐步接收模型生成的结果,而不是等待全部生成完成。这是通过流式生成(Streaming)实现的。

 
for chunk in ollama.stream(model="llama",prompt="逐步生成一段关于人工智能的文章。"
):print(chunk, end="")

在流式生成中,模型会逐步返回生成结果的部分内容,你可以实时处理这些结果。


5. 错误处理

调用模型时,可能会遇到错误(例如模型文件路径不正确、请求超时等)。可以通过捕获异常来处理这些错误。

 
try:response = ollama.generate(model="llama",prompt="请解释什么是大语言模型。")print(response)
except Exception as e:print(f"发生错误:{e}")

6. 高级用法:与其他工具集成

ollama 可以与其他工具(如 FlaskFastAPI)结合,用于构建自己的 AI 应用。

示例:构建一个简单的 Flask 服务

以下代码展示了如何使用 Flask 构建一个简单的 Web 应用,调用 Ollama 进行生成:

 
from flask import Flask, request, jsonify
import ollamaapp = Flask(__name__)@app.route('/generate', methods=['POST'])
def generate():data = request.jsonprompt = data.get("prompt", "")try:# 调用 Ollamaresponse = ollama.generate(model="llama",prompt=prompt,max_tokens=100)return jsonify({"response": response})except Exception as e:return jsonify({"error": str(e)}), 500if __name__ == '__main__':app.run(debug=True)

使用 Postman 或其他工具向 /generate 端点发送 POST 请求:

 
{"prompt": "Python 的主要优点是什么?"
}

返回结果会是模型生成的回答。


7. 注意事项

  1. 模型兼容性:确保本地安装的模型与 ollama 支持的格式兼容。
  2. 硬件要求:大型语言模型通常需要较高的硬件性能(特别是 GPU 支持)。在调用本地模型时,请确保你的环境足够满足计算需求。
  3. 版本更新:定期检查 ollama 的版本更新,获取最新功能和优化。

8. 参考文档

有关更多详细用法和配置选项,可以参考 ollama 的官方文档或相关资源。

  • 官网文档链接(如果有):请搜索 ollama 的官方资源。
  • 社区支持:可以通过 GitHub 或开发者社区寻求帮助。

相关文章:

Python 调用 Ollama 库:本地大语言模型使用详解

ollama 是一个用于调用本地大语言模型(Large Language Models,LLMs)的 Python 库,旨在提供简单、高效的 API 接口,以便开发者能够方便地与本地的大语言模型进行交互。以下是关于如何在 Python 中使用 ollama 库的详细介…...

python matplotlib绘图,显示和保存没有标题栏和菜单栏的图像

目录 1. 使用plt.savefig保存无边框图形 2. 显示在屏幕上,并且去掉窗口的标题栏和工具栏 3. 通过配置 matplotlib 的 backend 和使用 Tkinter(或其他图形库) 方法 1:使用 TkAgg 后端,并禁用窗口的工具栏和标题栏 …...

无人机(Unmanned Aerial Vehicle, UAV)路径规划介绍

无人机(Unmanned Aerial Vehicle, UAV)是无人驾驶飞行器的简称。凭借其体积小巧、操作简便、生存能力强等诸多优势,无人机在军事、电力巡检、航空航天与科学研究等诸多领域得到了广泛应用。在执行任务时,无人机可搭载多种传感器设…...

python爬虫入门(实践)

python爬虫入门(实践) 一、对目标网站进行分析 二、博客爬取 获取博客所有h2标题的路由 确定目标,查看源码 代码实现 """ 获取博客所有h2标题的路由 """url "http://www.crazyant.net"import re…...

于灵动的变量变幻间:函数与计算逻辑的浪漫交织(下)

大家好啊,我是小象٩(๑ω๑)۶ 我的博客:Xiao Xiangζั͡ޓއއ 很高兴见到大家,希望能够和大家一起交流学习,共同进步。 这一节我们主要来学习单个函数的声明与定义,static和extern… 这里写目录标题 一、单个函数…...

python实现pdf转word和excel

一、引言   在办公中,我们经常遇收到pdf文件格式,因为pdf格式文件不易修改,当我们需要编辑这些pdf文件时,经常需要开通会员或收费功能才能使用编辑功能。今天,我要和大家分享的,是如何使用python编程实现…...

Pandas使用笔记

个人学习笔记 日期转换 索引日期格式:2023-09-12 15:00:00 转换为:2023-09-12 import pandas as pd# 假设你的 DataFrame 名为 df,索引是 2023-09-12 15:00:00 # 这里创建一个示例 DataFrame 用于演示 data {value: [1, 2, 3]} index pd…...

高等数学学习笔记 ☞ 定积分与积分公式

1. 定积分的基本概念 1.1 定积分的定义 1. 定义:设函数在闭区间上有界。在闭区间上任意插入若干个分点,即, 此时每个小区间的长度记作(不一定是等分的)。然后在每个小区间上任意取,对应的函数值为。 为保证每段的值(即矩形面积)无…...

wow-agent---task2使用llama-index创建Agent

一:创造俩个函数,multiply和add作为fuction calling被LLM当做工具来使用,实现计算一个简单的计算题: from llama_index.llms.ollama import Ollama from llama_index.core.agent import ReActAgent from llama_index.core.tools …...

RabbitMQ实现延迟消息发送——实战篇

在项目中,我们经常需要使用消息队列来实现延迟任务,本篇文章就向各位介绍使用RabbitMQ如何实现延迟消息发送,由于是实战篇,所以不会讲太多理论的知识,还不太理解的可以先看看MQ的延迟消息的一个实现原理再来看这篇文章…...

Oracle 拉链式merge sort join 原理

Oracle 拉链式Merge Sort Join 的原理,我用一个生活中的比喻来解释。 --- 比喻场景:匹配快递包裹和收件人 1. 快递包裹清单 想象我们有一个快递公司送货的包裹清单,清单按照收件人的邮编(ZIP Code)排序: …...

QModbusTCPClient占用内存持续增长

最近使用QModbusTCPClient通信,需要频繁发送读写请求,发现软件占用内存一直在增减,经过不断咨询和尝试,终于解决了。 1.方案一(失败) 最开始以为是访问太频繁,导致创建reply的对象比delete re…...

代码中使用 Iterable<T> 作为方法参数的解释

/*** 根据课程 id 集合查询课程简单信息* param ids id 集合* return 课程简单信息的列表*/ GetMapping("/courses/simpleInfo/list") List<CourseSimpleInfoDTO> getSimpleInfoList(RequestParam("ids") Iterable<Long> ids); 一、代码解释&…...

Oracle数据库传统审计怎么用

Oracle数据库传统审计怎么用 审计功能开启与关闭By Session还是By AccessWhenever Successful数据库语句审计数据库对象审计查看审计策略和记录Oracle数据库审计功能分为传统审计(Traditional Auditing)和统一审计(Unified Auditing)。统一审计是从Oracle 12c版本开始引入的…...

leetcode-买卖股票问题

309. 买卖股票的最佳时机含冷冻期 - 力扣&#xff08;LeetCode&#xff09; 动态规划解题思路&#xff1a; 1、暴力递归&#xff08;难点如何定义递归函数&#xff09; 2、记忆化搜索-傻缓存法&#xff08;根据暴力递归可变参数确定缓存数组维度&#xff09; 3、严格表结构依…...

MYSQL学习笔记(三):分组、排序、分页查询

前言&#xff1a; 学习和使用数据库可以说是程序员必须具备能力&#xff0c;这里将更新关于MYSQL的使用讲解&#xff0c;大概应该会更新30篇&#xff0c;涵盖入门、进阶、高级(一些原理分析);这一篇是讲解分组、排序、分页查询&#xff0c;并且结合案例进行讲解&#xff1b;虽…...

上位机工作感想-2024年工作总结和来年计划

随着工作年限的增增长&#xff0c;发现自己越来越不喜欢在博客里面写一些掺杂自己感想的东西了&#xff0c;或许是逐渐被工作逼得“成熟”了吧。2024年&#xff0c;学到了很多东西&#xff0c;做了很多项目&#xff0c;也帮别人解决了很多问题&#xff0c;唯独没有涨工资。来这…...

【视觉惯性SLAM:十六、 ORB-SLAM3 中的多地图系统】

16.1 多地图的基本概念 多地图系统是机器人和计算机视觉领域中的一种关键技术&#xff0c;尤其在 SLAM 系统中具有重要意义。单一地图通常用于表示机器人或相机在环境中的位置和构建的空间结构&#xff0c;但单一地图在以下情况下可能无法满足需求&#xff1a; 大规模场景建图…...

【C++笔记】红黑树封装map和set深度剖析

【C笔记】红黑树封装map和set深度剖析 &#x1f525;个人主页&#xff1a;大白的编程日记 &#x1f525;专栏&#xff1a;C笔记 文章目录 【C笔记】红黑树封装map和set深度剖析前言一. 源码及框架分析1.1 源码框架分析 二. 模拟实现map和set2.1封装map和set 三.迭代器3.1思路…...

4.若依 BaseController

若依的BaseController是其他所有Controller的基类&#xff0c;一起来看下BaseController定义了什么 1. 定义请求返回内容的格式 code/msg/data 返回数据格式不是必须是AjaxResult&#xff0c;开发者可以自定义返回格式&#xff0c;注意与前端取值方式一致即可。 2. 获取调用…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...