【Pandas】pandas Series dot
Pandas2.2 Series
Binary operator functions
方法 | 描述 |
---|---|
Series.add() | 用于对两个 Series 进行逐元素加法运算 |
Series.sub() | 用于对两个 Series 进行逐元素减法运算 |
Series.mul() | 用于对两个 Series 进行逐元素乘法运算 |
Series.div() | 用于对两个 Series 进行逐元素除法运算 |
Series.truediv() | 用于执行真除法(即浮点数除法)操作 |
Series.floordiv() | 用于执行地板除法(即整数除法)操作 |
Series.mod() | 用于执行逐元素的取模运算 |
Series.pow() | 用于执行逐元素的幂运算 |
Series.radd() | 用于执行反向逐元素加法运算 |
Series.rsub() | 用于执行反向逐元素减法运算 |
Series.rmul() | 用于执行反向逐元素乘法运算 |
Series.rdiv() | 用于执行反向逐元素除法运算 |
Series.rtruediv() | 用于执行反向逐元素的真除法(即浮点数除法)运算 |
Series.rfloordiv() | 用于执行反向逐元素的地板除法(即整数除法)运算 |
Series.rmod() | 用于执行反向逐元素的取模运算 |
Series.rpow() | 用于执行反向逐元素的幂运算 |
Series.combine() | 用于将两个 Series 进行元素级别的组合操作 |
Series.combine_first() | 用于将两个 Series 进行元素级别的组合操作 |
Series.round() | 用于对 Series 中的每个元素进行四舍五入操作 |
Series.lt() | 用于执行逐元素的小于比较操作 |
Series.gt() | 用于执行逐元素的大于比较操作 |
Series.le() | 用于执行逐元素的小于等于比较操作 |
Series.ge() | 用于执行逐元素的大于等于比较操作 |
Series.ne() | 用于执行逐元素的不等于比较操作 |
Series.eq() | 用于比较两个 Series 对象是否相等的方法 |
Series.product() | 用于计算 Series 中所有元素的乘积 |
Series.dot() | 用于计算两个 Series 或一个 Series 与一个数组、矩阵(如 NumPy 数组或 Pandas DataFrame)的点积(内积) |
pandas.Series.dot
pandas.Series.dot
是 Pandas 库中 Series
对象的一个方法,用于计算两个 Series
或一个 Series
与一个数组、矩阵(如 NumPy 数组或 Pandas DataFrame)的点积(内积)。点积是线性代数中的一个重要概念,表示两个向量对应元素相乘后的和。
方法签名
Series.dot(other)
other
: 可以是另一个Series
、NumPy 数组或 Pandas DataFrame。如果other
是DataFrame
,则返回的结果是一个Series
,表示与DataFrame
每一列的点积。
示例及结果
示例1:两个 Series
的点积
import pandas as pd# 创建两个 Series
s1 = pd.Series([1, 2, 3])
s2 = pd.Series([4, 5, 6])# 使用 dot 方法计算点积
result = s1.dot(s2)print("两个 Series 的点积结果:")
print(result)
输出结果:
两个 Series 的点积结果:
32
在这个例子中,s1
和 s2
中的每个元素被逐个相乘,然后求和,得到的结果是 1*4 + 2*5 + 3*6 = 32
。
示例2:Series
与 NumPy 数组的点积
import pandas as pd
import numpy as np# 创建一个 Series
s = pd.Series([1, 2, 3])# 创建一个 NumPy 数组
arr = np.array([4, 5, 6])# 使用 dot 方法计算点积
result = s.dot(arr)print("Series 与 NumPy 数组的点积结果:")
print(result)
输出结果:
Series 与 NumPy 数组的点积结果:
32
在这个例子中,Series
和 NumPy 数组中的每个元素被逐个相乘,然后求和,得到的结果同样是 1*4 + 2*5 + 3*6 = 32
。
示例3:Series
与 DataFrame
的点积
import pandas as pd
import numpy as np# 创建一个 Series
s = pd.Series([1, 2, 3])# 创建一个 DataFrame
df = pd.DataFrame({'A': [4, 5, 6],'B': [7, 8, 9]
})# 使用 dot 方法计算点积
result = s.dot(df)print("Series 与 DataFrame 的点积结果:")
print(result)
输出结果:
Series 与 DataFrame 的点积结果:
A 32
B 50
dtype: int64
在这个例子中,Series
与 DataFrame
的每一列分别计算点积。对于列 A
,结果是 1*4 + 2*5 + 3*6 = 32
;对于列 B
,结果是 1*7 + 2*8 + 3*9 = 50
。最终返回的是一个包含这些点积结果的新 Series
。
总结
pandas.Series.dot
方法在数据分析和处理中非常有用,特别是在需要计算向量或矩阵的点积时。它支持 Series
之间的点积、Series
与 NumPy 数组的点积以及 Series
与 DataFrame
的点积。通过这些示例,可以看到 dot()
方法在不同场景下的应用及其强大功能。
相关文章:
【Pandas】pandas Series dot
Pandas2.2 Series Binary operator functions 方法描述Series.add()用于对两个 Series 进行逐元素加法运算Series.sub()用于对两个 Series 进行逐元素减法运算Series.mul()用于对两个 Series 进行逐元素乘法运算Series.div()用于对两个 Series 进行逐元素除法运算Series.true…...

02UML图(D2_行为图)
目录 学习前言 ---------------------------------- 讲解一:活动图 ---------------------------------- 讲解二:用例图 ---------------------------------- 讲解三:状态机图 ---------------------------------- 讲解四:…...

Kali环境变量技巧(The Environment Variable Technique Used by Kali
Kali环境变量技巧 朋友们好,我们今天继续更新《黑客视角下的Kali Linux的基础与网络管理》中的管理用户环境变量。为了充分利用我们的黑客操作系统Kali Linux,我们需要理解和善于使用环境变量,这样会使我们的工具更具便利,甚至具…...

【C++】如何从源代码编译红色警戒2地图编辑器
【C】如何从源代码编译红色警戒2地图编辑器 操作视频视频中的代码不需要下载三方库,已经包含三方库。 一、运行效果:二、源代码来源及编程语言:三、环境搭建:安装红警2安装VS2022下载代码,源代码其实不太多,…...

安路FPGA开发工具TD:问题解决办法 及 Tips 总结
安路科技(Anlogic)是一家专注于高性能、低功耗可编程逻辑器件(FPGA)设计和生产的公司。其提供的开发工具TD(TangDynasty)是专门为安路FPGA系列产品设计的集成开发环境(IDE)。以下是对…...

【Django开发】django美多商城项目完整开发4.0第12篇:商品部分,表结构【附代码文档】
本教程的知识点为: 项目准备 项目准备 配置 1. 修改settings/dev.py 文件中的路径信息 2. INSTALLED_APPS 3. 数据库 用户部分 图片 1. 后端接口设计: 视图原型 2. 具体视图实现 用户部分 使用Celery完成发送 判断帐号是否存在 1. 判断用户名是否存在 后…...

IDEA2023版中TODO的使用
介绍:TODO其实本质上还是注释,只不过加上了TODO这几个字符,可以让使用者快速找到。 注意:在类、接口等文件中,注释是使用// 即:// TODO 注释内容 在配置文件中,注释是使用# 即:# TO…...

windows 搭建flutter环境,开发windows程序
环境安装配置: 下载flutter sdk https://docs.flutter.dev/get-started/install/windows 下载到本地后,随便找个地方解压,然后配置下系统环境变量 编译windows程序本地需要安装vs2019或更新的开发环境 主要就这2步安装后就可以了࿰…...
支持向量机算法(三):非线性支持向量原理层层拆解,精读公式每一处细节
支持向量机算法(一):像讲故事一样讲明白它的原理及实现奥秘-CSDN博客 支持向量机算法(二):层层拆解,精读公式每一处细节-CSDN博客 支持向量机算法(一)、算法࿰…...

一文读懂iOS中的Crash捕获、分析以及防治
Crash系统性总结 Crash捕获与分析Crash收集符号化分析 Crash类别以及解法分析子线程访问UI而导致的崩溃unrecognized selector send to instance xxxKVO crashKVC造成的crashNSTimer导致的Crash野指针Watch Dog超时造成的crash其他crash待补充 参考文章: 对于iOS端开…...

代码随想录刷题day11|(链表篇)206.翻转链表
目录 一、链表理论基础 二、翻转链表思路 双指针解法 递归解法 三、相关算法题目 四、总结 一、链表理论基础 代码随想录 (programmercarl.com) 二、翻转链表思路 两种方法:双指针解法和递归解法 双指针解法 首先定义一个指针curr,初始化为原…...

【STM32-学习笔记-8-】I2C通信
文章目录 I2C通信Ⅰ、硬件电路Ⅱ、IIC时序基本单元① 起始条件② 终止条件③ 发送一个字节④ 接收一个字节⑤ 发送应答⑥ 接收应答 Ⅲ、IIC时序① 指定地址写② 当前地址读③ 指定地址读 Ⅳ、MPU6050---6轴姿态传感器(软件I2C)1、模块内部电路2、寄存器地…...
2025年1月17日(点亮三色LED)
系统信息: Raspberry Pi Zero 2W 系统版本: 2024-10-22-raspios-bullseye-armhf Python 版本:Python 3.9.2 已安装 pip3 支持拍摄 1080p 30 (1092*1080), 720p 60 (1280*720), 60/90 (640*480) 已安装 vim 已安装 git 学习目标:…...

ASP .NET Core 学习 (.NET 9)- 创建 API项目,并配置Swagger及API 分组或版本
本系列为个人学习 ASP .NET Core学习全过程记录,基于.NET 9 和 VS2022 ,实现前后端分离项目基础框架搭建和部署,以简单、易理解为主,注重页面美观度和后台代码简洁明了,可能不会使用过多的高级语法和扩展,后…...

mysql-5.7.18保姆级详细安装教程
本文主要讲解如何安装mysql-5.7.18数据库: 将绿色版安装包mysql-5.7.18-winx64解压后目录中内容如下图,该例是安装在D盘根目录。 在mysql安装目录中新建my.ini文件,文件内容及各配置项内容如下图,需要先将配置项【skip-grant-tab…...

RK3588平台开发系列讲解(NPU篇)NPU 驱动的组成
文章目录 一、NPU 驱动组成二、查询 NPU 驱动版本三、查询 rknn_server 版本四、查询 librknn_runtime 版本沉淀、分享、成长,让自己和他人都能有所收获!😄 一、NPU 驱动组成 NPU 驱动版本、rknn_server 版本、librknn_runtime 版本以及 RKNN Toolkit 版本的对应关系尤为重…...
ESP32学习笔记_FreeRTOS(6)——Event and Notification
摘要(From AI): 这篇博客详细介绍了 FreeRTOS 中的事件组和任务通知机制,讲解了事件组如何通过位操作实现任务间的同步与通信,以及任务如何通过通知机制进行阻塞解除和数据传递。博客提供了多个代码示例,展示了如何使用事件组和任务通知在多任…...
力扣-数组-350 两个数组的交集Ⅱ
解析 与刚刚的《两个数组的交集》一样,只是这道题允许重复,将上一题的set去除即可。 代码 class Solution { public:vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {vector<int> res;int index1 …...
云原生第二次练习
1.判断192.168.1.0/24网络中,当前在线的ip有哪些,并编写脚本打印出来。 #!/bin/bash for ip in $(seq 1 254); doping -c 1 -W 1 "192.168.1.$ip" > /dev/null 2>&1if [ $? -eq 0 ]; thenecho "192.168.1.$ip is online&qu…...

SpringMVC复习笔记
文章目录 SpringMVC 概念和基本使用SpringMVC 简介SpringMVC 核心组件和调用流程SpringMVC 基本使用第一步:导入依赖第二步:Controller 层开发第三步:SpringMVC 配置类配置核心组件第四步:SpringMVC 环境搭建第五步:部…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...

JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...

【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...