当前位置: 首页 > news >正文

【Linux网络编程】高效I/O--I/O的五种类型

目录

I/O的概念 

网络通信的本质

I/O的本质 

高效I/O 

五种I/O模型 

阻塞I/O 

非阻塞I/O 

信号驱动I/O 

多路转接/多路复用I/O

异步I/O 

非阻塞I/O的实现


 

I/O的概念 

网络通信的本质

网络通信的本质其实就是I/O

  • I:表示input(输入)
  • O:表示output(输出)
  • 网络通信时,双方主机中的两个进程本质上就是从套接字中拿取或放入数据,它们的本质是I/O
  • 网络中的各种协议,本质上就是规定网络通信时是如何I/O的

I/O的本质 

我们所谈的I/O,都是站在内存的角度

  • 对于输入来说,本质就是数据从外设放到内存里
  • 对于输出来说,本质上就是数据从内存到外设里
  • 以读文件为例,本质上不就是把磁盘上的文件数据读取到内存中 

I/O的本质:I/O = 等 + 拷贝

  • 以recv为例,我们调用recv的时候,若内核发送缓冲区中没有数据,那么执行流会进行阻塞等待。 若内核发送缓冲区中有了数据,那么recv会把数据拷贝到用户层
  • 其实不管是哪些函数,printf/scanf/read/write....,它们都会进行等待以及拷贝。所以I/O的本质是等+拷贝
  • 等:本质上就是等待I/O的条件就绪

高效I/O 

I/O = 等 + 拷贝,所以I/O的时间是由等的时间和拷贝的时间决定的,什么叫做高效I/O呢?

  • 对于拷贝的时间,我们是无法从软件方面进行优化的,因为拷贝的速度是由硬件架构所决定的
  • 对于等待的时间,我们可以从软件方面优化 
  • 所以我们所说的I/O效率比较低,大多数情况指的是I/O的等待时间较长

所以对于高效的I/O来说,就是尽可能的减少等待的时间, 即单位时间内,等的比重越低,那么I/O的效率越高!

程序员进行编程时,什么叫做高效的代码?

  • 减少I/O的比重
  • 若无法减少I/O的比重,那么尽可能把I/O进行等待的时间利用起来

五种I/O模型 

从理论回归到日常生活,其实我们日常生活中是有与I/O非常相似的例子,例如钓鱼

  • I/O = 等 + 拷贝,钓鱼 = 等 + 钓

 当我们去钓鱼的时候,首先把鱼钩丢入湖水中,然后一直等待,直到鱼咬钩就把鱼拉上来,放入到水桶中

  • 湖水类比OS内部缓冲区
  • 水桶类比用户缓冲区
  • 鱼类比数据
  • 鱼钩/鱼竿类比一个sockfd 

接下来让我们从钓鱼的角度理解五种I/O模型


阻塞I/O 

阻塞I/O:

  • 你把鱼钩和鱼饵放入水中后,完全专注于等待鱼上钩,整个过程中你什么也不做,无法去干其他事情。如果没有鱼上钩,你只能继续等,直到鱼上钩为止。
  • 在阻塞I/O模型中,程序在发起I/O请求后,会被阻塞(即停下来)直到I/O完成。程序不能做其他事情,必须等到数据完全准备好才会继续运行。
  • 这是最简单也是最直观的I/O模型,最常见于简单的单线程程序中。它的缺点是等待期间资源不能被其他任务使用,效率较低。

非阻塞I/O 

 非阻塞I/O:

  • 你把鱼钩和鱼饵放入水中,但不光等着鱼上钩,还不时检查鱼线有没有拉动。如果没鱼上钩,你就去做其他事情,比如整理钓具或者享受周围的景色,然后过段时间再回来看看鱼线是否有动静。
  • 在非阻塞 I/O 模型中,程序发起 I/O 请求后立即返回,即使数据还没有准备好。程序需要不断地主动检查 I/O 是否已经完成(类似于不断回去查看鱼有没有上钩),然后继续执行其他任务。
  • 这种模型不会像阻塞 I/O 一样浪费时间等待,但它需要程序频繁检查 I/O 状态,导致程序需要处理大量轮询操作。

信号驱动I/O 

信号驱动I/O

  • 你把鱼竿放在水里,然后装上一个铃铛,只有当有鱼上钩时,铃铛会响,提醒你上鱼。这时候你再去处理鱼线,而在铃铛没响之前,你可以做任何其他事情,比如读书或者打电话。
  • 在信号驱动I/O模型中,程序发出I/O请求并设置好通知机制(类似于安装铃铛)。当I/O就绪时,操作系统通过信号通知程序进行处理。这时程序无需轮询或阻塞,只需等待信号触发。
  • 这种模型减少了频繁检查I/O状态的需要,提升了效率,但对信号处理的实现复杂度要求较高。 

多路转接/多路复用I/O

多路复用I/O:

  • 你在湖边同时设置了多个鱼竿,你在等的过程中不断轮询检测这多个鱼竿,若发现有一个鱼竿鱼上钩了,那么你就立刻去拉他的鱼线,否则一直轮询等待
  • 多路复用I/O的核心思想是通过单一的线程或进程来同时管理多个I/O操作。当多个I/O通道中的任何一个变为就绪状态时(类似轮询时发现鱼上钩了),进程可以立即处理相应的I/O操作(钓),而不需要为每个I/O通道创建独立的线程。(只需要一个人不断轮询的方式就可以管理所有的鱼竿,无需创建执行流)
  • 多路复用是我们之后话题的重点!

异步I/O 

 异步I/O:

  • 你把鱼竿放在水里,然后雇了一个助手帮你钓鱼。你自己可以完全不管钓鱼的事情,去做别的任务。当助手钓到鱼时,会通知你鱼已经上钩并帮你把鱼钓上来,整个过程你几乎不需要直接参与。
  • 这里的助手就相当于操作系统,当你进行异步I/O时,若数据到来,由操作系统自动放入你的用户缓冲区,你无需参与钓鱼的整个过程 
  • 异步I/O的主要优势在于提高了CPU的利用率。在等待I/O完成的同时,CPU可以处理其他逻辑,避免了单一线程因I/O阻塞而闲置的情况。

同步I/O vs 异步I/O 同步I/O:

  • 只要参与了I/O的等+拷贝,我们就可以把它理解为同步I/O,因为I/O的完整概念就是等+拷贝
  • 同步I/O分别有:阻塞I/O,非阻塞I/O,信号驱动I/O,多路复用I/O 

注意:信号驱动I/O本质上是同步I/O,虽然等的过程是由铃铛驱动的,但具体到钓鱼的动作是由你自己来钓的。 

异步I/O:

  • 若完全没参与I/O的等+拷贝,直接可以拿到数据,我们称这种I/O为异步I/O 

线程同步 vs I/O同步

线程同步: 主要涉及多线程编程中如何管理线程之间的共享资源和数据访问,以防止线程竞争或数据不一致的情况。它通常应用在多线程或多进程环境下,当多个线程需要同时访问或修改共享资源时,必须通过同步机制来确保数据一致性。

I/O同步:涉及与设备(如硬盘、网络、输入/输出设备等)之间的数据传输。I/O同步主要解决的问题是如何处理慢速的I/O操作和程序的执行之间的协调。

线程同步和I/O同步虽然名字都有同步,但完全是两个不同领域的概念 


哪种I/O模型最高效? 

首先,我们先明确一个概念,由于I/O的本质是等+拷贝,所以I/O高效指的是单位时间内等的比重比较低,则称这种I/O是最高效的!

最高效的I/O模型是多路转接/多路复用

注意:尽管异步I/O我们看起来比较高效,但由于我们明确了I/O高效的定义是单位时间内等的比重比较低,但异步I/O等的比重其实没有降低,只是它把等的时间利用起来了,所以它不是最高效的I/O

阻塞I/O和非阻塞I/O和信号驱动I/O的单位时间内等的比重也没有降低,只是等的方式不同而已,所以它们不是最高效的I/O 

为什么多路转接是最高效的I/O

  • 多路转接监管的文件描述符是最多的,回到钓鱼例子,假设鱼咬钩的概率是均等的。若我拿了200个鱼竿,其他4个人每人一个鱼竿,那么谁钓上鱼的可能性最大呢?答案显然易见是我的, 因为我钓上鱼的概率是200/204,其他人是1/204
  • 而我钓上鱼的概率越大,也就意味着我钓上一只鱼的等待时间是最短的!也就意味着我钓鱼是最高效的。回到I/O模型,多路复用获取一个I/O数据的等待时间也是最短的,多个文件描述符的等待时间是重叠的,所以它是最高效的

 五种I/O模型流程图

阻塞I/O:

非阻塞I/O: 

 信号驱动I/O:

多路复用I/O:

  • 多路复用I/O与阻塞I/O流程图较为相似。
  • Linux中提供了select系统调用,用于阻塞监管多个文件描述符,若监管的过程中发现有一个文件描述符准备就绪,那么select就会返回,此时可以调用拷贝函数(如read/write/recv/send...)无需等待,直接拷贝
  • 多路复用I/O和阻塞I/O最本质的区别是,多路复用I/O一次阻塞监管了多个文件描述符,而阻塞I/O一次阻塞监管一个文件描述符

异步I/O: 

非阻塞I/O的实现

阻塞I/O我们一直都在用,如printf/scanf/read/send....,这里不再过多介绍

我们主要实现的I/O模型分别是:

  • 非阻塞I/O
  • 多路复用I/O 

非阻塞I/O的实现方式有很多,这里我们采用一种最通用的方式

  • 把文件描述符设置为非阻塞,此后所有的I/O函数在访问这个文件描述符时都是非阻塞的方式访问 

设置文件描述符为非阻塞,我们使用的系统调用是fcntl

功能:fcntl允许程序改变打开文件的属性,包括文件锁定、文件状态标志和其他与文件描述符相关的操作。 

int fcntl(int fd, int cmd, ... /* arg */ );
  • fd:要操作的文件的文件描述符
  • cmd:表示如何对fd进行操作
  • 头文件:fcntl.h 和 unistd.h

cmd的操作方法有哪些?

  • F_GETFL:获取文件状态标志。
  • F_SETFL:设置文件状态标志。
  • F_GETLK:获取锁的信息。
  • F_SETLK:设置锁定。
  • F_SETLKW:设置锁定(阻塞方式)。

我们修改文件描述符的阻塞/非阻塞状态,主要是两步

  • 由于我们只是想新增文件状态,所以我们需要保存一下旧的文件状态,可以使用F_GETFL获取旧的状态,此时的fcntl若获取成功的话返回值就是旧的状态,获取失败返回值是-1
  • 设置文件状态,若设置为非阻塞,则第三个参数(cmd之后)填写旧的状态按位或上O_NONBLOCK即可 

设置文件描述符为非阻塞的实现:

#include <unistd.h>
#include <fcntl.h>void SetNonBlock(int fd)
{int fl = fcntl(fd,F_GETFL);//保存旧的文件状态if(fl < 0){//获取错误return;}//获取成功fcntl(fd,F_SETFL,fl | O_NONBLOCK);//设置非阻塞
}

非阻塞测试代码:以0号文件描述符(标准输入为例)

  • read在读取非阻塞文件描述符时,读取错误和底层I/O条件不就绪的返回值都是-1
  • 要区分读取错误和底层I/O条件不就绪,我们只能用错误码的方式进行区分。
  • 若底层I/O条件不就绪,错误码被设置为11,宏表示为EAGAIN 或 EWOULDBLOCK
  • 若read读取时被信号中断,那么错误码会被设置为EINTR
  • 除了上述两种情况以外,就是发生了读取错误
#include <iostream>
#include <unistd.h>
#include <fcntl.h>void SetNonBlock(int fd)
{int fl = fcntl(fd, F_GETFL); // 保存旧的文件状态if (fl < 0){// 获取错误return;}// 获取成功fcntl(fd, F_SETFL, fl | O_NONBLOCK); // 设置非阻塞
}int main()
{while (true){char buffer[1024];SetNonBlock(0); // 设置0号文件描述符为非阻塞ssize_t n = read(0, buffer, sizeof(buffer));if (n > 0){// 读取成功buffer[n] = 0;std::cout << "Echo# " << buffer << std::endl;}else{if (errno == EWOULDBLOCK || errno == EAGAIN){// 缓冲区中无数据std::cout << "数据未就绪" << std::endl;}else if(errno == EINTR){std::cout << "读取被信号中断" << std::endl;}else{// 读取错误std::cerr << "读取错误" << std::endl;break;}}sleep(1);}return 0;
}

运行结果:

 

相关文章:

【Linux网络编程】高效I/O--I/O的五种类型

目录 I/O的概念 网络通信的本质 I/O的本质 高效I/O 五种I/O模型 阻塞I/O 非阻塞I/O 信号驱动I/O 多路转接/多路复用I/O 异步I/O 非阻塞I/O的实现 I/O的概念 网络通信的本质 网络通信的本质其实就是I/O I&#xff1a;表示input(输入)O&#xff1a;表示ou…...

企业级NoSQL数据库Redis

1.浏览器缓存过期机制 1.1 最后修改时间 last-modified 浏览器缓存机制是优化网页加载速度和减少服务器负载的重要手段。以下是关于浏览器缓存过期机制、Last-Modified 和 ETag 的详细讲解&#xff1a; 一、Last-Modified 头部 定义&#xff1a;Last-Modified 表示服务器上资源…...

Vscode:问题解决办法 及 Tips 总结

Visual Studio Code&#xff08;简称VSCode&#xff09;是一个功能强大的开源代码编辑器&#xff0c;广泛用于各种编程语言和开发场景&#xff0c;本博客主要记录在使用 VSCode 进行verilog开发时遇到的问题及解决办法&#xff0c;使用过程中的技巧 文章目录 扩展安装失败调试配…...

二十三种设计模式-装饰器模式

一、定义与核心思想 装饰器模式是一种结构型设计模式&#xff0c;其核心思想是动态地给一个对象添加一些额外的职责。通过这种方式&#xff0c;可以在不改变原有对象结构的基础上&#xff0c;灵活地增加新的功能&#xff0c;使得对象的行为可以得到扩展&#xff0c;同时又保持…...

架构思考与实践:从通用到场景的转变

在当今复杂多变的商业环境中&#xff0c;企业架构的设计与优化成为了一个关键议题。本文通过一系列随笔&#xff0c;探讨了业务架构的价值、从通用架构到场景架构的转变、恰如其分的架构设计以及如何避免盲目低效等问题。通过对多个实际案例的分析&#xff0c;笔者揭示了架构设…...

Spring MVC(一)

RestController RestController 是由 Controller 和 ResponseBody 两个注解构成的。 Spring 启动的时候会扫描所有包含 Controller 或者 RestController 注解的类&#xff0c;创建出对外的接口&#xff0c;这样外界就可以从这里与服务器实现交互&#xff0c;如果没有这个注解…...

vue3使用tsx渲染复杂逻辑的表单

前置 目前的应用场景是&#xff1a;检查项目是树结构&#xff0c;有的项目还需要动态显示对应的子集 项目用的是uniappvue3tsvite生成的app tsx模版 统一渲染入口 <script lang"ts">import uniForms from dcloudio/uni-ui/lib/uni-forms/uni-forms.vueimport…...

python助力WRF自动化运行

对大部分人而言&#xff0c;特别是新用户&#xff0c;WRF模式的安装繁琐且不必要&#xff0c;可以作为后续进阶掌握的技能&#xff0c;本学习跳过繁琐的安装步骤&#xff0c;直接聚焦模式的运行部分&#xff0c;通过短平快的教学&#xff0c;快速掌握模式运行。进一步将python语…...

Windows 下 Postgres 安装 TimescaleDB 插件

Windows 下 Postgres 安装 TimescaleDB 插件 一、准备工作 安装 PostgreSQL&#xff1a;首先确保你已经在 Windows 系统中成功安装了 PostgreSQL 数据库。可以从 PostgreSQL 官方网站下载适合你系统的安装包&#xff0c;并按照安装向导进行安装。安装过程中&#xff0c;记住设…...

【Vim Masterclass 笔记21】S09L39:Vim 设置与 vimrc 文件的用法示例(二)

文章目录 S09L39 Vim Settings and the Vimrc File - Part 21 Vim 的配色方案与 color 命令2 map 命令3 示例&#xff1a;用 map 命令快速生成 HTML 代码片段4 Vim 中的 Leader 键5 用 mkvimrc 命令自动生成配置文件 写在前面 本篇为 Vim 自定义配置的第二部分。当中的每个知识…...

【Docker】Supervisor 实现单容器运行多服务进程

本文内容均来自个人笔记并重新梳理&#xff0c;如有错误欢迎指正&#xff01; 如果对您有帮助&#xff0c;烦请点赞、关注、转发、订阅专栏&#xff01; 专栏订阅入口 | 精选文章 | Kubernetes | Docker | Linux | 羊毛资源 | 工具推荐 | 往期精彩文章 【Docker】&#xff08;全…...

【网络协议】【http】【https】ECDHE-TLS1.2

【网络协议】【http】【https】ECDHE-TLS1.2 ECDHE算法 1.客户端和服务器端事先确定好使用哪种椭圆曲线&#xff0c;和曲线上的基点G&#xff0c;这两个参数都是公开的&#xff0c; 双方各自随机生成一个随机数作为私钥d&#xff0c;并与基点 G相乘得到公钥Q(QdG)&#xff0c…...

(十五)WebGL中gl.texImage2D函数使用详解

在 WebGL 中&#xff0c;gl.texImage2D 是一个非常关键的函数&#xff0c;用于将图像数据上传到 WebGL 上下文中并作为纹理对象的一部分。它允许你将图像、视频、画布等作为纹理源。理解如何使用 gl.texImage2D 是在 WebGL 中处理纹理的核心之一。 文章目录 gl.texImage2D 的基…...

CSS 颜色

所有浏览器都支持的颜色名 所有现代浏览器均支持以下 140 种颜色名称&#xff08;单击颜色名称或十六进制值&#xff0c;可查看将以该颜色为背景颜色以及不同的文本颜色&#xff09;&#xff1a; 颜色名十六进制颜色值颜色AliceBlue#F0F8FFAntiqueWhite#FAEBD7Aqua#00FFFFAqu…...

C#,入门教程(03)——Visual Studio 2022编写彩色Hello World与动画效果

C#&#xff0c;入门教程(01)—— Visual Studio 2022 免费安装的详细图文与动画教程https://blog.csdn.net/beijinghorn/article/details/123350910 C#&#xff0c;入门教程(02)—— Visual Studio 2022开发环境搭建图文教程https://blog.csdn.net/beijinghorn/article/detail…...

杀死安装 CentOS-7-x86_64-DVD-1908

使用 VMware 安装 CentOS-7-x86_64-DVD-1908 CentOS是 reahat 的 免费版本&#xff0c;有了ubutun &#xff0c;为什么还要使用 CentOS呢&#xff1f; 在linux 服务器实际开发中&#xff0c;大家都用的CentOS&#xff0c;因为两个原因&#xff0c;一个是免费&#xff0c;第二是…...

55.【5】BUUCTF WEB NCTF2019 sqli

进入靶场 输入admin 123 过滤的这么严格&#xff1f;&#xff1f;&#xff1f; 过滤很严格&#xff0c;此时要么爆破&#xff0c;要么扫描 直接扫描&#xff0c;得到robots.txt 访问后又得到hint.txt 继续访问 图片内容如下 $black_list "/limit|by|substr|mid|,|admi…...

LeetCode 题目 2545. 根据第 K 场考试的分数排序

在本篇文章中&#xff0c;我们将探讨如何根据第 K 场考试的分数对学生进行排序。这个问题是 LeetCode 上的一个中等难度问题&#xff0c;涉及到排序算法和自定义比较函数的使用。 问题描述 解题思路 理解问题 首先&#xff0c;我们需要理解问题的核心&#xff1a;根据第 K 场…...

算法随笔_12:最短无序子数组

上一篇: 算法随笔_11: 字符串的排列-CSDN博客 题目描述如下: 给你一个整数数组 nums &#xff0c;你需要找出一个 连续子数组 &#xff0c;如果对这个子数组进行升序排序&#xff0c;那么整个数组都会变为升序排序。请你找出符合题意的最短子数组&#xff0c;并输出它的长度。…...

计算机毕业设计PySpark+Hadoop+Hive机票预测 飞机票航班数据分析可视化大屏 航班预测系统 机票爬虫 飞机票推荐系统 大数据毕业设计

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践

01技术背景与业务挑战 某短视频点播企业深耕国内用户市场&#xff0c;但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大&#xff0c;传统架构已较难满足当前企业发展的需求&#xff0c;企业面临着三重挑战&#xff1a; ① 业务&#xff1a;国内用户访问海外服…...