计算机毕业设计PySpark+Hadoop+Hive机票预测 飞机票航班数据分析可视化大屏 航班预测系统 机票爬虫 飞机票推荐系统 大数据毕业设计
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作
主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等
业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。
收藏点赞不迷路 关注作者有好处
文末获取源码
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
《PySpark+Hadoop+Hive机票预测》开题报告
一、课题背景与意义
随着全球航空业的快速发展,航班和机票数据呈现出爆炸性增长的趋势。这些数据包含了航班时间、航线、价格、乘客量、天气条件等多种信息。对于航空公司来说,如何高效处理和分析这些数据,以优化航班安排、提高运营效率、提升服务质量,成为了一个重要的研究课题。特别是机票价格的预测,对于航空公司制定价格策略、提高盈利能力,以及对于旅客选择合适的购票时机和路线,都具有重要意义。
二、研究目标与内容
本课题旨在设计并实现一个基于PySpark、Hadoop和Hive的机票预测系统。该系统通过深度挖掘和分析历史机票数据,预测未来机票价格、乘客量等关键指标,为航空公司提供决策支持,帮助优化航班安排、提高运营效率、提升服务质量,同时也有助于提升乘客的出行体验。
研究内容主要包括以下几个方面:
-
数据采集与预处理:从航空公司、机场、气象部门等多个渠道收集航班数据,包括航班时间、航线、价格、乘客量、天气条件等。利用Hadoop的HDFS进行数据存储,并进行数据清洗、转换和加载,确保数据质量。
-
数据分析与挖掘:运用Hive进行数据分析,通过SQL语言对航班数据进行聚合、统计和计算,提取有用的特征。基于历史数据,构建机票预测模型,包括价格预测模型、乘客量预测模型等。
-
预测模型构建:选择合适的机器学习算法或深度学习模型,根据历史数据进行模型训练和验证,得到预测模型的参数和准确度指标。通过不断优化模型,提高预测精度。
-
系统设计与实现:设计并实现机票预测系统的前端界面和后端逻辑,采用Java、Python等编程语言,结合Hadoop、Hive等框架进行系统开发。实现数据可视化功能,将预测结果以图表、地图等形式展示,方便用户理解和应用。
-
系统测试与优化:对系统进行测试,验证其有效性和可靠性,并根据测试结果进行优化改进。确保系统能够稳定运行,并满足航空公司的实际需求。
三、技术路线与方法
-
PySpark:作为一种流行的分布式计算框架,PySpark可以高效地处理大规模数据,并且其易于使用的Python API在数据科学和机器学习应用中受到广泛欢迎。我们将利用PySpark进行数据预处理和特征提取。
-
Hadoop:Hadoop提供利用服务器集群对海量数据进行分布式处理的能力。HDFS(Hadoop Distributed File System)用于数据存储,MapReduce用于数据处理。我们将利用Hadoop进行数据存储和初步的数据处理。
-
Hive:Hive是基于大数据技术(文件系统+运算框架)的SQL数据仓库工具。我们将利用Hive进行数据分析,通过SQL语言对数据进行聚合、统计和计算,提取有用的特征,并构建预测模型。
-
机器学习算法:选择合适的机器学习算法(如时间序列预测、回归模型等)进行模型训练和验证。通过不断调整模型参数,提高预测精度。
-
数据可视化:利用Echarts等可视化工具,将预测结果以图表、地图等形式展示,方便用户理解和应用。
四、研究计划与进度安排
-
第一阶段(1-2周):进行文献调研和需求分析,明确课题目标和研究内容。
-
第二阶段(3-6周):进行数据采集与预处理,构建分布式数据库。
-
第三阶段(7-10周):进行数据分析与挖掘,构建机票预测模型。
-
第四阶段(11-14周):进行系统设计与实现,开发前端界面和后端逻辑。
-
第五阶段(15-16周):进行系统测试与优化,验证系统有效性和可靠性。
-
第六阶段(17周):撰写毕业论文,准备答辩。
五、预期成果与创新点
预期成果包括:
- 设计并实现一个基于PySpark、Hadoop和Hive的机票预测系统。
- 构建机票价格预测模型、乘客量预测模型等关键预测模型。
- 实现数据可视化功能,将预测结果以图表、地图等形式展示。
创新点在于:
- 结合PySpark、Hadoop和Hive三种技术,实现高效的数据处理和分析。
- 构建多种预测模型,提高预测精度和可靠性。
- 实现数据可视化功能,方便用户理解和应用预测结果。
六、参考文献
(此处省略具体参考文献列表,实际撰写时应列出所有引用的国内外相关文献)
通过以上研究计划和技术路线,本课题旨在设计并实现一个高效的机票预测系统,为航空公司和旅客提供有价值的决策支持。
运行截图











推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例










优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻
相关文章:
计算机毕业设计PySpark+Hadoop+Hive机票预测 飞机票航班数据分析可视化大屏 航班预测系统 机票爬虫 飞机票推荐系统 大数据毕业设计
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
Linux-C/C++--初探linux应用编程概念
对于大多数首次接触 Linux 应用编程的读者来说,可能对应用编程(也可称为系统编程)这个概念并不 太了解,所以在正式学习 Linux 应用编程之前,笔者有必要向大家介绍这些简单基本的概念,从整体上认识 到应用编…...
用sklearn运行分类模型,选择AUC最高的模型保存模型权重并绘制AUCROC曲线(以逻辑回归、随机森林、梯度提升、MLP为例)
诸神缄默不语-个人CSDN博文目录 文章目录 1. 导入包2. 初始化分类模型3. 训练、测试模型,绘图,保存指标 1. 导入包 from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, GradientBoostingClass…...
动手学大数据-3社区开源实践
目录 数据库概览: MaxComput: HAWQ: Hologres: TiDB: Spark: ClickHouse: Apache Calcite 概览 Calcite RBO HepPlanner 优化规则(Rule) 内置有100优化规则 …...
使用Pydantic驾驭大模型
本文介绍Pydantic 库,首先介绍其概念及优势,然后通过基本示例展示如何进行数据验证。后面通过多个示例解释如何在LangChain中通过Pydantic进行数据验证,保证与大模型进行交互过程中数据准确性,并显示清晰的数验证错误信息。 Pydan…...
【HarmonyOS之旅】基于ArkTS开发(二) -> UI开发之常见布局
目录 1 -> 自适应布局 1.1 -> 线性布局 1.1.1 -> 线性布局的排列 1.1.2 -> 自适应拉伸 1.1.3 -> 自适应缩放 1.1.4 -> 定位能力 1.1.5 -> 自适应延伸 1.2 -> 层叠布局 1.2.1 -> 对齐方式 1.2.2 -> Z序控制 1.3 -> 弹性布局 1.3.1…...
【论文投稿】Python 网络爬虫:探秘网页数据抓取的奇妙世界
目录 前言 一、Python—— 网络爬虫的绝佳拍档 二、网络爬虫基础:揭开神秘面纱 (一)工作原理:步步为营的数据狩猎 (二)分类:各显神通的爬虫家族 三、Python 网络爬虫核心库深度剖析 &…...
队列的基本用法
以下是关于 C 语言中队列的详细知识,包括队列的生成、相关函数使用以及其他重要概念: 一、队列的概念 队列是一种线性数据结构,它遵循先进先出(First In First Out,FIFO)的原则,就像日常生活中…...
网络安全VS数据安全
关于网络安全和数据安全,我们常听到如下两种不同声音: 观点一:网络安全是数据安全的基础,把当年做网络安全的那一套用数据安全再做一遍。 观点二:数据安全如今普遍以为是网络安全的延伸,实际情况是忽略数据…...
Linux(NFS服务)
赛题拓扑: 题目: NFS: 共享/webdata/目录。用于存储AppSrv主机的WEB数据。仅允许AppSrv主机访问该共享。 [rootstoragesrv ~]# yum install nfs-utils -y [rootstoragesrv ~]# mkdir /webdata [rootstoragesrv ~]# chmod -R ow /webdata …...
python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)边缘检测
OpenCV中边缘检测四种常用算子: (1)Sobel算子 Sobel算子是一种基于梯度的边缘检测算法。它通过对图像进行卷积操作来计算图像的梯度,并将梯度的大小作为边缘的强度。它使用两个3x3的卷积核,分别用于计…...
SSM课设-学生管理系统
【课设者】SSM课设-学生管理系统 技术栈: 后端: SpringSpringMVCMybatisMySQLJSP 前端: HtmlCssJavaScriptEasyUIAjax 功能: 学生端: 登陆 学生信息管理 个人信息管理 老师端: 多了教师信息管理 管理员端: 多了班级信息管理 多了年级信息管理 多了系统用户管理...
【Pytorch实用教程】TCN(Temporal Convolutional Network,时序卷积网络)简介
文章目录 TCN的基本特点TCN的优点TCN的应用场景典型的TCN架构总结TCN(Temporal Convolutional Network,时序卷积网络)是一种用于处理序列数据的深度学习模型,尤其适用于时间序列预测、语音识别、自然语言处理等任务。它利用卷积神经网络(CNN)来处理时序数据,相比于传统的…...
网络安全 | 什么是正向代理和反向代理?
关注:CodingTechWork 引言 在现代网络架构中,代理服务器扮演着重要的角色。它们在客户端和服务器之间充当中介,帮助管理、保护和优化数据流。根据代理的工作方向和用途,代理服务器可分为正向代理和反向代理。本文将深入探讨这两种…...
3 前端(中):JavaScript
文章目录 前言:JavaScript简介一、ECMAscript(JavaScript基本语法)1 JavaScript与html结合方式(快速入门)2 基本知识(1)JavaScript注释(和Java注释一样)(2&am…...
VIT论文阅读与理解
transform网络结构 vision transform网络结构 图1:模型概述。我们将图像分割成固定大小的补丁,线性嵌入每个补丁,添加位置嵌入,并将结果向量序列馈送到标准Transformer编码器。为了执行分类,我们使用标准方法向序列中添…...
JavaScript笔记APIs篇01——DOM获取与属性操作
黑马程序员视频地址:黑马程序员前端JavaScript入门到精通全套视频教程https://www.bilibili.com/video/BV1Y84y1L7Nn?vd_source0a2d366696f87e241adc64419bf12cab&spm_id_from333.788.videopod.episodes&p78https://www.bilibili.com/video/BV1Y84y1L7Nn?…...
SQL表间关联查询详解
简介 本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(left join)、右连接(right join)、全连接(full join)、内连接(inner join)、交叉连接&…...
select函数
系统调用 select()可用于执行 I/O 多路复用操作,调用 select()会一直阻塞,直到某一个或多个文件描述符成为就绪态(可以读或写)。其函数原型如下所示: #include <sys/select.h> int select(int nfds, fd_set *re…...
建造者模式(或者称为生成器(构建器)模式)
一、什么是建造者模式? 将复杂对象的构建与表示进行分离,使得统一的构建过程,可以创建出不同的对象表现模式 就是将复杂对象里面的成员变量,设置不同的值,使得生成出来的对象拥有不同的属性值; 二、特点…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...





