(一)相机标定——四大坐标系的介绍、对应转换、畸变原理以及OpenCV完整代码实战(C++版)
一、四大坐标系介绍
1,世界坐标系
从这个世界(world)的视角来看物体
世界坐标系是3D空间坐标,每个点的位置用 ( X w , Y w , Z w ) (X_w,Y_w,Z_w) (Xw,Yw,Zw)表示
2,相机坐标系
相机本身具有一个坐标系,其也是3D空间坐标
从相机(camera)的视角来看物体,每个点的位置用 ( X c , Y c , Z c ) (X_c,Y_c,Z_c) (Xc,Yc,Zc)表示
3,图像坐标系
相机坐标系是3D空间的,而我们通过相机拍照得到的照片却是2D平面,这之间涉及到了透视投影(perspective projection),大白话就是相似三角形,将3D空间上的点映射到2D平面上
图像坐标系是实际的物理坐标系 ( x , y ) (x,y) (x,y),其原点位置一般在相机光轴成像与成像平面的交点位置,通常为成像平面的中心点,物理单位为mm
4,像素坐标系
我们在处理图像数据的时候,使用的是像素坐标系 ( u , v ) (u,v) (u,v),比如这个图像的大小为1080*720,即长和宽为1080和780个像素;分辨率等相关概念也是这个大概意思,单位是像素pixel
每个像素都有对应的实际物理尺寸,比如1像素=0.5mm
像素有些情况是矩形,分为x和y方向的长度
5,总结
我们需要通过一些手段,将原本在世界坐标系下的点转换到像素坐标系下
世界坐标系是因为物体本身真实存在的位置,而转到像素坐标系下是因为我们在进行图像处理的时候针对的是像素
故,相机标定的最终目的是实现世界坐标系和像素坐标系之间的转换
二、四大坐标系转换
1,世界坐标系——相机坐标系
相机坐标系和世界坐标系都是3D空间坐标系,任何一个空间中的点,都可以通过旋转
和平移
进行相互转换
假设世界坐标系下有个点 P w ( X w , Y w , Z w ) P_w(X_w,Y_w,Z_w) Pw(Xw,Yw,Zw),通过乘以一个变换矩阵(旋转R+平移T)就可以得到相机坐标系下的对应位置 P c ( X c , Y c , Z c ) P_c(X_c,Y_c,Z_c) Pc(Xc,Yc,Zc)
[ X c Y c Z c ] = [ R 11 R 12 R 13 R 21 R 22 R 23 R 31 R 32 R 33 ] [ X w Y w Z w ] + [ T 1 T 2 T 3 ] \begin{bmatrix} X_c\\ Y_c\\ Z_c \end{bmatrix}= \begin{bmatrix} R_{11}&R_{12}&R_{13}\\ R_{21}&R_{22}&R_{23}\\ R_{31}&R_{32}&R_{33} \end{bmatrix} \begin{bmatrix} X_w\\ Y_w\\ Z_w \end{bmatrix}+ \begin{bmatrix} T_1\\ T_2\\ T_3 \end{bmatrix} XcYcZc = R11R21R31R12R22R32R13R23R33 XwYwZw + T1T2T3
为了后续的计算方便,转换为齐次坐标系进行表示
[ X c Y c Z c 1 ] = [ R 11 R 12 R 13 T 1 R 21 R 22 R 23 T 2 R 31 R 32 R 33 T 3 0 0 0 1 ] [ X w Y w Z w 1 ] \begin{bmatrix} X_c\\ Y_c\\ Z_c\\ 1 \end{bmatrix}= \begin{bmatrix} R_{11}&R_{12}&R_{13}&T_1\\ R_{21}&R_{22}&R_{23}&T_2\\ R_{31}&R_{32}&R_{33}&T_3\\ 0&0&0&1 \end{bmatrix} \begin{bmatrix} X_w\\ Y_w\\ Z_w\\ 1 \end{bmatrix} XcYcZc1 = R11R21R310R12R22R320R13R23R330T1T2T31 XwYwZw1
其中这个变换矩阵(旋转R和平移T)称为相机外参
:
[ R 11 R 12 R 13 T 1 R 21 R 22 R 23 T 2 R 31 R 32 R 33 T 3 0 0 0 1 ] \begin{bmatrix} R_{11}&R_{12}&R_{13}&T_1\\ R_{21}&R_{22}&R_{23}&T_2\\ R_{31}&R_{32}&R_{33}&T_3\\ 0&0&0&1 \end{bmatrix} R11R21R310R12R22R320R13R23R330T1T2T31
相机外参实现了某点所在的世界坐标系
到相机坐标系
之间的转换
2,相机坐标系——图像坐标系
就此我们实现了世界坐标系下点 P w ( X w , Y w , Z w ) P_w(X_w,Y_w,Z_w) Pw(Xw,Yw,Zw)到其所对应的相机的坐标系下位置 P c ( X c , Y c , Z c ) P_c(X_c,Y_c,Z_c) Pc(Xc,Yc,Zc)之间的转换
相机坐标系是3D空间坐标系,而相机拍出来的图片是2D平面,这之间涉及透视投影(perspective projection),大白话为相似三角形
我们可以看到 X c , Y c , Z c , O c X_c,Y_c,Z_c,O_c Xc,Yc,Zc,Oc这个坐标系为相机坐标系,淡蓝色的平面 x , y , o x,y,o x,y,o为图像坐标系(成像平面)
相机成像的原理是小孔成像,故相机坐标系和图像坐标系的y轴是相反的
相机坐标系的原点 O c O_c Oc与图像坐标系的原点 o o o之间的距离为焦距 f f f(这里假设相机坐标系和图像坐标系的轴是相互平行且放置位置为正中心,但也有不平行情况,就需要考虑角度了
)
相机坐标系下的点 P c ( X c , Y c , Z c ) P_c(X_c,Y_c,Z_c) Pc(Xc,Yc,Zc)与相机坐标系原点 O c O_c Oc的连线过图像坐标系平面上的点 p ( x , y ) p(x,y) p(x,y)
也就是相机坐标系下的点 P c ( X c , Y c , Z c ) P_c(X_c,Y_c,Z_c) Pc(Xc,Yc,Zc)对应的图像坐标系下的位置为 p ( x , y ) p(x,y) p(x,y)
根据相似三角形可知:
{ x f = X c Z c y f = Y c Z c ⇒ { Z c ⋅ x = f ⋅ X c Z c ⋅ y = f ⋅ Y c \begin{cases} \frac{x}{f} = \frac{X_c}{Z_c}\\ \frac{y}{f} = \frac{Y_c}{Z_c} \end{cases} \Rightarrow \begin{cases} Z_c·x = f·X_c\\ Z_c·y = f·Y_c \end{cases} {fx=ZcXcfy=ZcYc⇒{Zc⋅x=f⋅XcZc⋅y=f⋅Yc
转化为矩阵形式
Z c [ x y 1 ] = [ f 0 0 0 0 f 0 0 0 0 1 0 ] [ X c Y c Z c 1 ] Z_c \begin{bmatrix} x\\y\\1\end{bmatrix} =\begin{bmatrix} f&0&0&0\\ 0&f&0&0\\ 0&0&1&0 \end{bmatrix} \begin{bmatrix} X_c\\ Y_c\\ Z_c\\ 1 \end{bmatrix} Zc xy1 = f000f0001000 XcYcZc1
其中 Z c Z_c Zc为点所在相机坐标系下的Z轴方向位置,是个常量,又称为比例因子
f f f为相机的焦距
通过该矩阵就可以实现相机坐标系
到图像坐标系
之间的转换
3,图像坐标系——像素坐标系
图像坐标系是物理坐标系,因为它涉及到具体的尺寸大小,每个像素都有其对应的物理尺寸
一般情况下像素是矩形,通常情况下假设 1 p i x e l = d x m m , 1 p i x e l = d y m m 1 pixel = dx mm,1 pixel = dy mm 1pixel=dxmm,1pixel=dymm,其中 d x dx dx和 d y dy dy表示一个像素的长宽分别为多少mm
已知有个小蓝点在图像坐标系
下的位置为 ( x , y ) (x,y) (x,y),图像坐标系原点所在像素坐标系
下的位置为 ( u 0 , v 0 ) (u_0,v_0) (u0,v0)
求解:小蓝点所对应的像素坐标系
为多少?
假设:1个像素的长和宽分别为 d x dx dx和 d y dy dy mm,图像坐标系下1mm对应像素坐标系下为 1 d x \frac{1}{dx} dx1个像素
小蓝点在图像坐标系下 ( x , y ) (x,y) (x,y)应像素坐标为 ( x ∗ 1 d x , y ∗ 1 d y ) (x * \frac{1}{dx} , y * \frac{1}{dy}) (x∗dx1,y∗dy1),即 ( x d x , y d y ) (\frac{x}{dx},\frac{y}{dy}) (dxx,dyy)
u = x d x + u 0 v = y d y + v 0 u = \frac{x}{dx} + u_0\\ v = \frac{y}{dy} + v_0 u=dxx+u0v=dyy+v0
整理成矩阵形式:
[ u v 1 ] = [ 1 d x 0 u 0 0 1 d y v 0 0 0 1 ] [ x y 1 ] \begin{bmatrix} u\\ v\\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{dx}&0&u_0\\ 0&\frac{1}{dy}&v_0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} x\\ y\\ 1 \end{bmatrix} uv1 = dx1000dy10u0v01 xy1
也可以写成另一种形式
[ x y 1 ] = [ d x 0 − u 0 d x 0 d y − v 0 d y 0 0 1 ] [ u v 1 ] \begin{bmatrix} x\\ y\\ 1 \end{bmatrix} = \begin{bmatrix} dx&0&-u_0dx\\ 0&dy&-v_0dy\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u\\ v\\ 1 \end{bmatrix} xy1 = dx000dy0−u0dx−v0dy1 uv1
由此可以得到一个矩阵,实现该点在图像坐标系 ( x , y ) (x,y) (x,y)和像素坐标系 ( u , v ) (u,v) (u,v)下的直接转换
4,各个坐标系转换相互推导结合
我们的最终目的是:世界坐标系
转换到像素坐标系
若已知世界坐标系下点的坐标为 P w ( X w , Y w , Z w ) P_w(X_w,Y_w,Z_w) Pw(Xw,Yw,Zw)
将世界坐标系 P w ( X w , Y w , Z w ) P_w(X_w,Y_w,Z_w) Pw(Xw,Yw,Zw)转换为相机坐标系 P c ( X c , Y c , Z c ) P_c(X_c,Y_c,Z_c) Pc(Xc,Yc,Zc)
[ X c Y c Z c 1 ] = [ R 11 R 12 R 13 T 1 R 21 R 22 R 23 T 2 R 31 R 32 R 33 T 3 0 0 0 1 ] [ X w Y w Z w 1 ] \begin{bmatrix} X_c\\ Y_c\\ Z_c\\ 1 \end{bmatrix}= \begin{bmatrix} R_{11}&R_{12}&R_{13}&T_1\\ R_{21}&R_{22}&R_{23}&T_2\\ R_{31}&R_{32}&R_{33}&T_3\\ 0&0&0&1 \end{bmatrix} \begin{bmatrix} X_w\\ Y_w\\ Z_w\\ 1 \end{bmatrix} XcYcZc1 = R11R21R310R12R22R320R13R23R330T1T2T31 XwYwZw1
将相机坐标系 P c ( X c , Y c , Z c ) P_c(X_c,Y_c,Z_c) Pc(Xc,Yc,Zc)转化为图像坐标系 p ( x , y ) p(x,y) p(x,y)
Z c [ x y 1 ] = [ f 0 0 0 0 f 0 0 0 0 1 0 ] [ X c Y c Z c 1 ] Z_c \begin{bmatrix} x\\y\\1\end{bmatrix} =\begin{bmatrix} f&0&0&0\\ 0&f&0&0\\ 0&0&1&0 \end{bmatrix} \begin{bmatrix} X_c\\ Y_c\\ Z_c\\ 1 \end{bmatrix} Zc xy1 = f000f0001000 XcYcZc1
将图像坐标系 ( x , y ) (x,y) (x,y)转化为像素坐标系 ( u , v ) (u,v) (u,v),这里的 ( u 0 , v 0 ) (u_0,v_0) (u0,v0)是图像坐标系的原点所对应的像素坐标系下的位置
[ u v 1 ] = [ 1 d x 0 u 0 0 1 d y v 0 0 0 1 ] [ x y 1 ] \begin{bmatrix} u\\ v\\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{dx}&0&u_0\\ 0&\frac{1}{dy}&v_0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} x\\ y\\ 1 \end{bmatrix} uv1 = dx1000dy10u0v01 xy1
最终进行前后整理可得:
Z c [ u v 1 ] = [ 1 d x 0 u 0 0 1 d y v 0 0 0 1 ] [ f 0 0 0 0 f 0 0 0 0 1 0 ] [ R 11 R 12 R 13 T 1 R 21 R 22 R 23 T 2 R 31 R 32 R 33 T 3 0 0 0 1 ] [ X w Y w Z w 1 ] Z_c \begin{bmatrix} u\\ v\\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{dx}&0&u_0\\ 0&\frac{1}{dy}&v_0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} f&0&0&0\\ 0&f&0&0\\ 0&0&1&0 \end{bmatrix} \begin{bmatrix} R_{11}&R_{12}&R_{13}&T_1\\ R_{21}&R_{22}&R_{23}&T_2\\ R_{31}&R_{32}&R_{33}&T_3\\ 0&0&0&1 \end{bmatrix} \begin{bmatrix} X_w\\ Y_w\\ Z_w\\ 1 \end{bmatrix} Zc uv1 = dx1000dy10u0v01 f000f0001000 R11R21R310R12R22R320R13R23R330T1T2T31 XwYwZw1
其中 Z c Z_c Zc表示该点在相机坐标系下的Z轴方向的位置,又称为比例因子,本质是常量
相机内参为:
[ 1 d x 0 u 0 0 1 d y v 0 0 0 1 ] [ f 0 0 0 0 f 0 0 0 0 1 0 ] \begin{bmatrix} \frac{1}{dx}&0&u_0\\ 0&\frac{1}{dy}&v_0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} f&0&0&0\\ 0&f&0&0\\ 0&0&1&0 \end{bmatrix} dx1000dy10u0v01 f000f0001000
相机外参为:
[ R 11 R 12 R 13 T 1 R 21 R 22 R 23 T 2 R 31 R 32 R 33 T 3 0 0 0 1 ] \begin{bmatrix} R_{11}&R_{12}&R_{13}&T_1\\ R_{21}&R_{22}&R_{23}&T_2\\ R_{31}&R_{32}&R_{33}&T_3\\ 0&0&0&1 \end{bmatrix} R11R21R310R12R22R320R13R23R330T1T2T31
就此我们实现了世界坐标系和像素坐标系的转换,这就是相机标定的意义所在
5,总结
理想状态下的相机标定,其本质是求解相机的内外参数矩阵
相机外参矩阵需要求解旋转和平移共6个参数
相机内参菊展需要求解焦距 f f f、图像坐标系原点所在的像素坐标系的坐标 ( u 0 , v 0 ) (u_0,v_0) (u0,v0)也称为像主点坐标、单个像素点的长和宽 d x dx dx和 d y dy dy mm,共5个参数
相机内外参数矩阵需要求解11
个参数,这是不考虑畸变的理想状况,但实际相机都不可避免存在畸变,故还需要求解畸变系数
三、畸变
相机标定的最终目的是拿到相机的内外参数矩阵,这些内外参数针对同一个相机是固定的,只需要标定一次即可
相机硬件本身多多少少不可避免存在一定的误差,故需要求解畸变系数用于相机的校准,然后再进行求解内外参矩阵
畸变主要包括(影响最大):切向畸变
和径向畸变
,是相机本身无法避免的误差
1,切向畸变
切向畸变产生于相机组装过程中,透镜本身与相机传感器成像平面不平行
2,径向畸变
径向畸变产生于透镜本身的形状,光线在远离透镜中心的地方比靠近中心的地方更加弯曲
径向畸变主要包括:桶形畸变
和枕形畸变
切向畸变和径向畸变有对应的模型公式,网上一大堆教程,需要的小伙伴自行学习推导哈
畸变涉及到五个参数:径向畸变参数 k 1 、 k 2 、 k 3 k_1、k_2、k_3 k1、k2、k3;切向畸变参数 p 1 、 p 2 p_1、p_2 p1、p2
四、OpenCV代码实战
求解方法很多,这里以张正友标定法(也称为棋盘格标定法)为例进行演示
1,准备棋盘格数据
①OpenCV自带几张棋盘格图片,大致路径为:opencv\sources\samples\data
,当然也可以自己去拍几张棋盘格
把这几张图片放到VS项目中
②新建一个项目,需要用到OpenCV
③跑一下代码即可
2,完整代码
修改地方:
①棋盘格角点行列数:int CHECKERBOARD[2]{ 6,9 };
②图片所在文件夹路径:std::string path = "./image/*.jpg";
#include <opencv2/opencv.hpp>
#include <stdio.h>
#include <iostream>using namespace std;
using namespace cv;// Defining the dimensions of checkerboard
// 定义棋盘格的尺寸
int CHECKERBOARD[2]{ 6,9 }; // 一行有6个,一共有9行 数点的行列---6行9列int main()
{// Creating vector to store vectors of 3D points for each checkerboard image// 创建矢量以存储每个棋盘图像的三维点矢量std::vector<std::vector<cv::Point3f> > objpoints;// Creating vector to store vectors of 2D points for each checkerboard image// 创建矢量以存储每个棋盘图像的二维点矢量std::vector<std::vector<cv::Point2f> > imgpoints;// Defining the world coordinates for 3D points// 为三维点定义世界坐标系std::vector<cv::Point3f> objp;for (int i{ 0 }; i < CHECKERBOARD[1]; i++){for (int j{ 0 }; j < CHECKERBOARD[0]; j++){objp.push_back(cv::Point3f(j, i, 0));}}// Extracting path of individual image stored in a given directory// 提取存储在给定目录中的单个图像的路径std::vector<cv::String> images;// Path of the folder containing checkerboard images// 包含棋盘图像的文件夹的路径std::string path = "./image/*.jpg";// 使用glob函数读取所有图像的路径cv::glob(path, images);cv::Mat frame, gray;// vector to store the pixel coordinates of detected checker board corners// 存储检测到的棋盘转角像素坐标的矢量std::vector<cv::Point2f> corner_pts;bool success;// Looping over all the images in the directory// 循环读取图像for (int i{ 0 }; i < images.size(); i++){frame = cv::imread(images[i]);if (frame.empty()){continue;}if (i == 40){int b = 1;}cout << "the current image is " << i << "th" << endl;cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);// Finding checker board corners// 寻找角点// If desired number of corners are found in the image then success = true// 如果在图像中找到所需数量的角,则success = true// opencv4以下版本,flag参数为CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FAST_CHECK | CV_CALIB_CB_NORMALIZE_IMAGEsuccess = cv::findChessboardCorners(gray, cv::Size(CHECKERBOARD[0], CHECKERBOARD[1]), corner_pts, CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_FAST_CHECK | CALIB_CB_NORMALIZE_IMAGE);/** If desired number of corner are detected,* we refine the pixel coordinates and display* them on the images of checker board*/// 如果检测到所需数量的角点,我们将细化像素坐标并将其显示在棋盘图像上if (success){// 如果是OpenCV4以下版本,第一个参数为CV_TERMCRIT_EPS | CV_TERMCRIT_ITERcv::TermCriteria criteria(TermCriteria::EPS | TermCriteria::Type::MAX_ITER, 30, 0.001);// refining pixel coordinates for given 2d points.// 为给定的二维点细化像素坐标cv::cornerSubPix(gray, corner_pts, cv::Size(11, 11), cv::Size(-1, -1), criteria);// Displaying the detected corner points on the checker board// 在棋盘上显示检测到的角点cv::drawChessboardCorners(frame, cv::Size(CHECKERBOARD[0], CHECKERBOARD[1]), corner_pts, success);objpoints.push_back(objp);imgpoints.push_back(corner_pts);}cv::imshow("Image", frame);cv::waitKey(0);}cv::destroyAllWindows();cv::Mat cameraMatrix, distCoeffs, R, T;/** Performing camera calibration by* passing the value of known 3D points (objpoints)* and corresponding pixel coordinates of the* detected corners (imgpoints)*/// 通过传递已知3D点(objpoints)的值和检测到的角点(imgpoints)的相应像素坐标来执行相机校准cv::calibrateCamera(objpoints, imgpoints, cv::Size(gray.rows, gray.cols), cameraMatrix, distCoeffs, R, T);// 内参矩阵std::cout << "cameraMatrix : " << std::endl;std::cout << cameraMatrix << std::endl;// 透镜畸变系数std::cout << "distCoeffs : " << std::endl;std::cout << distCoeffs << std::endl;// rvecsstd::cout << "Rotation vector : " << std::endl;std::cout << R << std::endl;// tvecsstd::cout << "Translation vector : " << std::endl;std::cout << T << std::endl;return 0;
}
3,运行效果
求解得到内参矩阵
、透镜畸变系数
、旋转和平移向量
相关文章:

(一)相机标定——四大坐标系的介绍、对应转换、畸变原理以及OpenCV完整代码实战(C++版)
一、四大坐标系介绍 1,世界坐标系 从这个世界(world)的视角来看物体 世界坐标系是3D空间坐标,每个点的位置用 ( X w , Y w , Z w ) (X_w,Y_w,Z_w) (Xw,Yw,Zw)表示 2,相机坐标系 相机本身具有一个坐标系&…...

【Linux网络编程】高效I/O--I/O的五种类型
目录 I/O的概念 网络通信的本质 I/O的本质 高效I/O 五种I/O模型 阻塞I/O 非阻塞I/O 信号驱动I/O 多路转接/多路复用I/O 异步I/O 非阻塞I/O的实现 I/O的概念 网络通信的本质 网络通信的本质其实就是I/O I:表示input(输入)O:表示ou…...

企业级NoSQL数据库Redis
1.浏览器缓存过期机制 1.1 最后修改时间 last-modified 浏览器缓存机制是优化网页加载速度和减少服务器负载的重要手段。以下是关于浏览器缓存过期机制、Last-Modified 和 ETag 的详细讲解: 一、Last-Modified 头部 定义:Last-Modified 表示服务器上资源…...

Vscode:问题解决办法 及 Tips 总结
Visual Studio Code(简称VSCode)是一个功能强大的开源代码编辑器,广泛用于各种编程语言和开发场景,本博客主要记录在使用 VSCode 进行verilog开发时遇到的问题及解决办法,使用过程中的技巧 文章目录 扩展安装失败调试配…...
二十三种设计模式-装饰器模式
一、定义与核心思想 装饰器模式是一种结构型设计模式,其核心思想是动态地给一个对象添加一些额外的职责。通过这种方式,可以在不改变原有对象结构的基础上,灵活地增加新的功能,使得对象的行为可以得到扩展,同时又保持…...

架构思考与实践:从通用到场景的转变
在当今复杂多变的商业环境中,企业架构的设计与优化成为了一个关键议题。本文通过一系列随笔,探讨了业务架构的价值、从通用架构到场景架构的转变、恰如其分的架构设计以及如何避免盲目低效等问题。通过对多个实际案例的分析,笔者揭示了架构设…...

Spring MVC(一)
RestController RestController 是由 Controller 和 ResponseBody 两个注解构成的。 Spring 启动的时候会扫描所有包含 Controller 或者 RestController 注解的类,创建出对外的接口,这样外界就可以从这里与服务器实现交互,如果没有这个注解…...
vue3使用tsx渲染复杂逻辑的表单
前置 目前的应用场景是:检查项目是树结构,有的项目还需要动态显示对应的子集 项目用的是uniappvue3tsvite生成的app tsx模版 统一渲染入口 <script lang"ts">import uniForms from dcloudio/uni-ui/lib/uni-forms/uni-forms.vueimport…...
python助力WRF自动化运行
对大部分人而言,特别是新用户,WRF模式的安装繁琐且不必要,可以作为后续进阶掌握的技能,本学习跳过繁琐的安装步骤,直接聚焦模式的运行部分,通过短平快的教学,快速掌握模式运行。进一步将python语…...
Windows 下 Postgres 安装 TimescaleDB 插件
Windows 下 Postgres 安装 TimescaleDB 插件 一、准备工作 安装 PostgreSQL:首先确保你已经在 Windows 系统中成功安装了 PostgreSQL 数据库。可以从 PostgreSQL 官方网站下载适合你系统的安装包,并按照安装向导进行安装。安装过程中,记住设…...

【Vim Masterclass 笔记21】S09L39:Vim 设置与 vimrc 文件的用法示例(二)
文章目录 S09L39 Vim Settings and the Vimrc File - Part 21 Vim 的配色方案与 color 命令2 map 命令3 示例:用 map 命令快速生成 HTML 代码片段4 Vim 中的 Leader 键5 用 mkvimrc 命令自动生成配置文件 写在前面 本篇为 Vim 自定义配置的第二部分。当中的每个知识…...
【Docker】Supervisor 实现单容器运行多服务进程
本文内容均来自个人笔记并重新梳理,如有错误欢迎指正! 如果对您有帮助,烦请点赞、关注、转发、订阅专栏! 专栏订阅入口 | 精选文章 | Kubernetes | Docker | Linux | 羊毛资源 | 工具推荐 | 往期精彩文章 【Docker】(全…...
【网络协议】【http】【https】ECDHE-TLS1.2
【网络协议】【http】【https】ECDHE-TLS1.2 ECDHE算法 1.客户端和服务器端事先确定好使用哪种椭圆曲线,和曲线上的基点G,这两个参数都是公开的, 双方各自随机生成一个随机数作为私钥d,并与基点 G相乘得到公钥Q(QdG),…...
(十五)WebGL中gl.texImage2D函数使用详解
在 WebGL 中,gl.texImage2D 是一个非常关键的函数,用于将图像数据上传到 WebGL 上下文中并作为纹理对象的一部分。它允许你将图像、视频、画布等作为纹理源。理解如何使用 gl.texImage2D 是在 WebGL 中处理纹理的核心之一。 文章目录 gl.texImage2D 的基…...
CSS 颜色
所有浏览器都支持的颜色名 所有现代浏览器均支持以下 140 种颜色名称(单击颜色名称或十六进制值,可查看将以该颜色为背景颜色以及不同的文本颜色): 颜色名十六进制颜色值颜色AliceBlue#F0F8FFAntiqueWhite#FAEBD7Aqua#00FFFFAqu…...

C#,入门教程(03)——Visual Studio 2022编写彩色Hello World与动画效果
C#,入门教程(01)—— Visual Studio 2022 免费安装的详细图文与动画教程https://blog.csdn.net/beijinghorn/article/details/123350910 C#,入门教程(02)—— Visual Studio 2022开发环境搭建图文教程https://blog.csdn.net/beijinghorn/article/detail…...

杀死安装 CentOS-7-x86_64-DVD-1908
使用 VMware 安装 CentOS-7-x86_64-DVD-1908 CentOS是 reahat 的 免费版本,有了ubutun ,为什么还要使用 CentOS呢? 在linux 服务器实际开发中,大家都用的CentOS,因为两个原因,一个是免费,第二是…...

55.【5】BUUCTF WEB NCTF2019 sqli
进入靶场 输入admin 123 过滤的这么严格??? 过滤很严格,此时要么爆破,要么扫描 直接扫描,得到robots.txt 访问后又得到hint.txt 继续访问 图片内容如下 $black_list "/limit|by|substr|mid|,|admi…...

LeetCode 题目 2545. 根据第 K 场考试的分数排序
在本篇文章中,我们将探讨如何根据第 K 场考试的分数对学生进行排序。这个问题是 LeetCode 上的一个中等难度问题,涉及到排序算法和自定义比较函数的使用。 问题描述 解题思路 理解问题 首先,我们需要理解问题的核心:根据第 K 场…...
算法随笔_12:最短无序子数组
上一篇: 算法随笔_11: 字符串的排列-CSDN博客 题目描述如下: 给你一个整数数组 nums ,你需要找出一个 连续子数组 ,如果对这个子数组进行升序排序,那么整个数组都会变为升序排序。请你找出符合题意的最短子数组,并输出它的长度。…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...

让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...