当前位置: 首页 > news >正文

如何学习Transformer架构

Transformer架构自提出以来,在自然语言处理领域引发了革命性的变化。作为一种基于注意力机制的模型,Transformer解决了传统序列模型在并行化和长距离依赖方面的局限性。本文将探讨Transformer论文《Attention is All You Need》与Hugging Face Transformers库之间的关系,并详细介绍如何利用Hugging Face Transformers的代码深入学习Transformer架构。

一、Transformer论文与Hugging Face Transformers库的关系

1. Transformer论文:《Attention is All You Need》

基本信息:

  • 标题Attention is All You Need
  • 作者:Ashish Vaswani等人
  • 发表时间:2017年
  • 会议:NIPS 2017(现称为NeurIPS)

主要内容:

Transformer论文首次提出了一种全新的神经网络架构,彻底摆脱了循环神经网络(RNN)和卷积神经网络(CNN)的限制。其核心创新在于引入了自注意力机制(Self-Attention)多头注意力机制(Multi-Head Attention),使模型能够高效并行化处理序列数据,捕获全局依赖关系。

影响:

Transformer架构的提出极大地推动了自然语言处理的发展,随后衍生出了多种基于Transformer的模型,如BERT、GPT系列、RoBERTa、T5等。这些模型在各种NLP任务中都取得了卓越的表现。

2. Hugging Face Transformers库

基本信息:

  • 名称:Hugging Face Transformers
  • 开发者:Hugging Face公司
  • 性质:开源的深度学习模型库
  • 支持框架:PyTorch、TensorFlow、JAX

主要内容:

Hugging Face Transformers库实现了多种基于Transformer架构的预训练模型,方便开发者在不同任务中应用。这些模型涵盖了自然语言处理、计算机视觉和音频处理等多个领域。

功能特点:

  • 丰富的预训练模型:提供了数以千计的预训练模型,支持多种任务和模态。
  • 简洁的API接口:通过pipeline等高级API,用户可以快速加载模型并应用于实际任务。
  • 多框架支持:兼容PyTorch、TensorFlow和JAX。
  • 社区支持和共享:拥有活跃的开源社区,用户可以分享和获取模型。

3. 二者的关系与区别

联系:

  • 基础架构相同:Hugging Face Transformers库中的模型都是基于Transformer架构,源自《Attention is All You Need》论文。
  • 理论与实践的结合:Transformer论文提供了理论基础和原始模型,Hugging Face Transformers库将这些理论和模型实现为易于使用的代码,并扩展到了更多的任务和应用场景。

区别:

  1. 性质不同

    • Transformer论文:是一篇学术论文,提出了一种新的神经网络架构,侧重于理论和实验验证。
    • Hugging Face Transformers库:是一个开源的软件库,提供了基于Transformer架构的预训练模型和工具,方便实际项目的应用和微调。
  2. 范围不同

    • Transformer论文:重点介绍了原始的Transformer模型,主要用于机器翻译。
    • Transformers库:实现了大量基于Transformer的模型,支持文本分类、问答系统、文本生成、图像处理、语音识别等任务。
  3. 应用目的不同

    • Transformer论文:旨在为学术研究提供新的方向和启发。
    • Transformers库:旨在提供实用的工具和模型,加速模型的开发和部署。

二、利用Hugging Face Transformers代码学习Transformer架构

Transformer架构虽然在理论上相对复杂,但通过阅读和实践Hugging Face Transformers库的代码,可以更直观地理解其工作原理。以下是具体的学习步骤和建议。

1. 理论基础准备

在深入代码之前,建议先熟悉Transformer的理论概念。

  • 阅读原始论文:Attention is All You Need
  • 参考资料
    • The Illustrated Transformer
    • 上面文章的中文翻译
    • Transformer动画演示

2. 搭建学习环境

  • 安装Transformers库

    pip install transformers
    pip install torch  # 如果使用PyTorch
    
  • 克隆源码仓库

    git clone https://github.com/huggingface/transformers.git
    

3. 了解库的整体结构

  • 目录结构

    • src/transformers/models:各模型的实现文件夹。
    • src/transformers/models/bert:BERT模型代码。
    • src/transformers/models/gpt2:GPT-2模型代码。
  • 选择学习的模型

    • BERT:代表编码器架构。
    • GPT-2:代表解码器架构。

4. 深入阅读模型源码

4.1 BERT模型
  • 文件位置src/transformers/models/bert/modeling_bert.py

  • 核心组件

    • BertModel:主模型类。
    • BertEncoder:由多个BertLayer组成的编码器。
    • BertLayer:包含注意力和前馈网络的基础层。
    • BertSelfAttention:自注意力机制的实现。
    • BertSelfOutput:注意力机制的输出处理。
  • 阅读顺序

    1. BertModel:从forward方法开始,理解输入如何通过各个子模块。

    2. BertEncoder和BertLayer:理解编码器的堆叠方式和每一层的操作。

    3. BertSelfAttention:深入了解自注意力的实现,包括querykeyvalue的计算。

    4. 残差连接和LayerNorm:注意每一层的残差连接和归一化过程。

4.2 GPT-2模型
  • 文件位置src/transformers/models/gpt2/modeling_gpt2.py

  • 核心组件

    • GPT2Model:主模型类。
    • GPT2Block:包含注意力和前馈网络的基础块。
    • GPT2Attention:自注意力机制的实现。
  • 注意事项

    GPT-2是解码器架构,与BERT的编码器架构有所不同,可对比学习。

5. 理解核心机制

5.1 自注意力机制(Self-Attention)
  • 关键步骤

    1. 计算querykeyvalue矩阵

    2. 计算注意力得分querykey的点积。

    3. 应用缩放和掩码:缩放注意力得分,应用softmax

    4. 计算注意力输出:注意力得分与value矩阵相乘。

  • 代码位置BertSelfAttention类。

5.2 多头注意力机制(Multi-Head Attention)
  • 实现方式:并行计算多个头的注意力,提升模型的表达能力。

  • 代码位置BertSelfAttention中的多头实现。

5.3 前馈网络(Feed-Forward Network, FFN)
  • 结构:两层线性变换,中间有非线性激活函数(如GELU)。

  • 代码位置BertIntermediateBertOutput类。

5.4 位置编码(Positional Encoding)
  • 实现方式:可学习的绝对位置嵌入,补充序列的位置信息。

  • 代码位置BertEmbeddings类。

6. 实践练习

6.1 运行示例代码
  • 官方示例:在examples目录中,有各种任务的示例代码。

  • 练习建议

    • 文本分类:使用BERT在情感分析任务上进行训练。
    • 文本生成:使用GPT-2进行文本生成,调试参数影响。
6.2 修改和调试代码
  • 实验建议

    • 调整模型超参数:修改层数、隐藏单元数、注意力头数。
    • 尝试新功能:例如,修改激活函数,或添加新的正则化措施。
  • 调试工具:使用IDE的调试功能或插入打印语句,观察模型的内部状态。

7. 结合理论与实现

  • 对照论文公式和代码:将源码中的实现与论文中的公式一一对应,如注意力得分的计算。

  • 绘制计算流程图:帮助理解数据在模型中的流动。

8. 参考资料

  • Hugging Face Transformers文档:https://huggingface.co/transformers/

  • 深入理解Transformer的博客和教程

    • The Annotated Transformer
    • 知乎上关于Transformer的详解

9. 参与社区交流

  • GitHub Issues:查看他人的提问和解答,加深对常见问题的理解。

  • 论坛和讨论组:加入Hugging Face的官方论坛,与社区成员交流经验。

10. 学习建议

  • 循序渐进:逐步深入理解,不要急于求成。

  • 实践为主:多动手实验,加深对理论的理解。

  • 记录心得:将学习过程中遇到的问题和收获记录下来,方便后续复习。

三、总结

通过结合Transformer论文的理论基础和Hugging Face Transformers库的实践代码,能够更全面地理解Transformer架构的精髓。从理论到实践,再从实践回归理论,这种循环往复的学习方式,将有助于深入掌握Transformer及其在各种任务中的应用。

希望本文能对您学习和理解Transformer架构有所帮助!

相关文章:

如何学习Transformer架构

Transformer架构自提出以来,在自然语言处理领域引发了革命性的变化。作为一种基于注意力机制的模型,Transformer解决了传统序列模型在并行化和长距离依赖方面的局限性。本文将探讨Transformer论文《Attention is All You Need》与Hugging Face Transform…...

浅谈云计算22 | Kubernetes容器编排引擎

Kubernetes容器编排引擎 一、Kubernetes管理对象1.1 Kubernetes组件和架构1.2 主要管理对象类型 二、Kubernetes 服务2.1 服务的作用与原理2.2 服务类型 三、Kubernetes网络管理3.1 网络模型与目标3.2 网络组件3.2.1 kube-proxy3.2.2 网络插件 3.3 网络通信流程 四、Kubernetes…...

计算 SAMOut V3 在将词汇表从1万 增加到6千万的情况下能够减少多少参数

当我们将词汇表从 60,000,000(六千万)减少到 10,000 时,实际上是在缩小模型的词嵌入层及其共享的语言模型头(LM Head)的规模。这将导致参数量显著减少。我们可以通过以下步骤来计算具体的参数减少量。 参数量减少计算…...

03.选择排序

一、题目思路 选择排序是一种简单直观的排序算法。它的工作原理是:首先在未排序序列中找到最小(或最大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大&#xff…...

02_登录窗口

新建场景 重命名为GameRoot 双击GameRoot进入新场景 同样摄像机清除格式 删除平行光并关闭渲染灯光的天空盒 新建空节点重命名为GameRoot GameRoot为游戏的根节点 在整个游戏中都不会被删除 在游戏的根节点下创建UI的根节点Canvas 创建一个空节点 作为UI根节点下的 登录场景UI…...

NodeJS | 搭建本地/公网服务器 live-server 的使用与安装

目录 介绍 安装 live-server 安装方法 安装后的验证 环境变量问题 Node.js 环境变量未配置正确 全局安装的 live-server 路径未添加到环境变量 运行测试 默认访问主界面 访问文件 报错信息与解决 问题一:未知命令 问题二:拒绝脚本 公网配置…...

SystemUI 实现音量条同步功能

需求:SystemUI 实现音量条同步功能 具体问题 以前在SystemUI 下拉框添加了音量条控制,目前发现在SystemUI下拉框显示状态的情况下, 按键或者底部虚拟导航点击音量加减时候,SystemUI音量条不更新。 如下图:两个Syste…...

嵌入式知识点总结 C/C++ 专题提升(一)-关键字

针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.C语言宏中"#“和"##"的用法 1.1.(#)字符串化操作符 1.2.(##)符号连接操作符 2.关键字volatile有什么含意?并举出三个不同的例子? 2.1.并行设备的硬件寄存…...

基础入门-传输加密数据格式编码算法密文存储代码混淆逆向保护安全影响

知识点: 1、传输格式&传输数据-类型&编码&算法 2、密码存储&代码混淆-不可逆&非对称性 一、演示案例-传输格式&传输数据-类型&编码&算法 传输格式 JSON XML WebSockets HTML 二进制 自定义 WebSockets:聊天交互较常…...

几个Linux系统安装体验(续): 统信桌面系统

本文介绍统信桌面系统(uos)的安装。 下载 下载地址: https://www.chinauos.com/resource/download-professional 下载文件:本文下载文件名称为uos-desktop-20-professional-1070-amd64.iso。 下载注意事项:可直接下…...

算法日记6.StarryCoding P52:我们都需要0(异或)

一、题目 二、题解: 1、对于这道题,题意为让我们寻找一个数x使得 b[i]a[i]^x, 并且b[1]^b[2]^b[3]^ b[4]^b[5]....0 2、我们把b[i]给拆开,可以得到 3、又因为^满足结合律,因此,可以把括号给拆开 4、接着…...

【网络协议】RFC3164-The BSD syslog Protocol

引言 Syslog常被称为系统日志或系统记录,是一种标准化的协议,用于网络设备、服务器和应用程序向中央Syslog服务器发送日志消息。互联网工程任务组(IETF)发布的RFC 3164,专门定义了BSD Syslog协议的规范和实现方式。通…...

SpringCloud -根据服务名获取服务运行实例并进行负载均衡

Nacos注册中心 每个服务启动之后都要向注册中心发送服务注册请求&#xff0c;注册中心可以和各个注册客户端自定义协议实现服务注册和发现。 pom.xml <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-na…...

CentOS 安装Redis

1. 安装 Redis 安装 EPEL 仓库&#xff08;对于 CentOS/RHEL 系统&#xff09;&#xff1a; 首先安装 EPEL 仓库&#xff0c;因为 Redis 存在于 EPEL 仓库中&#xff1a; yum install epel-release安装 Redis 数据库&#xff1a; yum install redis2. 修改 Redis 配置文件 …...

Linux网络 TCP socket

TCP简介 TCP&#xff08;Transmission Control Protocol&#xff09;是一种面向连接的、可靠的、基于字节流的传输层通信协议。它位于OSI模型的第四层&#xff0c;主要为应用层提供数据传输服务。TCP通过三次握手建立连接&#xff0c;确保数据在发送和接收过程中的准确性和顺序…...

(一)相机标定——四大坐标系的介绍、对应转换、畸变原理以及OpenCV完整代码实战(C++版)

一、四大坐标系介绍 1&#xff0c;世界坐标系 从这个世界&#xff08;world&#xff09;的视角来看物体 世界坐标系是3D空间坐标&#xff0c;每个点的位置用 ( X w , Y w , Z w ) (X_w,Y_w,Z_w) (Xw​,Yw​,Zw​)表示 2&#xff0c;相机坐标系 相机本身具有一个坐标系&…...

【Linux网络编程】高效I/O--I/O的五种类型

目录 I/O的概念 网络通信的本质 I/O的本质 高效I/O 五种I/O模型 阻塞I/O 非阻塞I/O 信号驱动I/O 多路转接/多路复用I/O 异步I/O 非阻塞I/O的实现 I/O的概念 网络通信的本质 网络通信的本质其实就是I/O I&#xff1a;表示input(输入)O&#xff1a;表示ou…...

企业级NoSQL数据库Redis

1.浏览器缓存过期机制 1.1 最后修改时间 last-modified 浏览器缓存机制是优化网页加载速度和减少服务器负载的重要手段。以下是关于浏览器缓存过期机制、Last-Modified 和 ETag 的详细讲解&#xff1a; 一、Last-Modified 头部 定义&#xff1a;Last-Modified 表示服务器上资源…...

Vscode:问题解决办法 及 Tips 总结

Visual Studio Code&#xff08;简称VSCode&#xff09;是一个功能强大的开源代码编辑器&#xff0c;广泛用于各种编程语言和开发场景&#xff0c;本博客主要记录在使用 VSCode 进行verilog开发时遇到的问题及解决办法&#xff0c;使用过程中的技巧 文章目录 扩展安装失败调试配…...

二十三种设计模式-装饰器模式

一、定义与核心思想 装饰器模式是一种结构型设计模式&#xff0c;其核心思想是动态地给一个对象添加一些额外的职责。通过这种方式&#xff0c;可以在不改变原有对象结构的基础上&#xff0c;灵活地增加新的功能&#xff0c;使得对象的行为可以得到扩展&#xff0c;同时又保持…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...