当前位置: 首页 > news >正文

DETR论文阅读

1. 动机

传统的目标检测任务需要大量的人工先验知识,例如预定义的先验anchor,NMS后处理策略等。这些人工先验知识引入了很多人为因素,且较难处理。如果能够端到端到直接生成目标检测结果,将会使问题变得很优雅。

2. 主要贡献

提出了一个新的目标函数,用二分图匹配的方式强制模型输出一个独一无二的目标框,避免了传统方法中的非极大值抑制。

首次把transformer引入到目标检测领域。

简化了检测流程,有效地消除了对许多人工设计组件的需求,如NMS或anchor生成。实现了端到端的目标检测。

3. 模型结构

DETR将目标检测看作一种set prediction问题,并提出了一个十分简洁的目标检测pipeline,即CNN提取基础特征,送入Transformer做关系建模,得到的输出通过二分图匹配算法与图片上的ground truth做匹配。

先使用CNN对图像进行特征提取,把得到的二维特征转换到一维,然后送入transformer的encoder-decoder结构之中。然后利用decoder的结果预测检测框的输出。

将目标检测看作set prediction问题
DETR算法流程

3.1. backbone

DETR基础版本的backbone使用torchvision上预训练过的ResNet-50,训练时冻结BN层参数。设输入img维度为(3, H, W),经过backbone后变为(2048, \frac{H}{32}, \frac{W}{32})。此外在后续实验阶段论文还使用了ResNet-101以及改进过的DC5版本。

3.2. transfomer

CNN提取的特征拉直(flatten)后加入位置编码(positional encoding)得到序列特征,作为Transformer encoder的输入。Transformer中的attention机制具有全局感受野,能够实现全局上下文的关系建模,其中encoder和decoder均由多个encoder、decoder层堆叠而成。每个encoder层中包含self-attention机制,每个decoder中包含self-attention和cross-attention。

3.3. object queries

输出100个目标框和它的分类。设计了一套全新的损失函数,能够在训练的时候把与ground truth匹配的框算作为正样本,不匹配的框作为负样本。在推理的时候使用一个阈值来选择结果,预测得分高于阈值的作为输出,低于阈值的忽略。

transformer解码器中的序列是object queries。每个query对应图像中的一个物体实例(包含背景实例 ϕ),它通过cross-attention从编码器输出的序列中对特定物体实例的特征做聚合,又通过self-attention建模该物体实例域其他物体实例之间的关系。最终,FFN基于特征聚合后的object queries做分类的检测框的回归。

值得一提的是,object queries是可学习的embedding,与当前输入图像的内容无关(不由当前图像内容计算得到)。论文中对不同object query在COCO数据集上输出检测框的位置做了统计(如上图所示),可以看不同object query是具有一定位置倾向性的。对object queries的理解可以有多个角度。首先,它随机初始化,并随着网络的训练而更新,因此隐式建模了整个训练集上的统计信息。其次,在目标检测中每个object query可以看作是一种可学习的动态anchor,可以发现,不同于Faster RCNN, RetinaNet等方法在特征的每个像素上构建稠密的anchor不同,detr只用少量稀疏的anchor(object queries)做预测,这也启发了后续的一系列工作。

3.4. 损失函数

DETR有两种损失:(1)二分图匹配阶段的损失,用于确定最优匹配。(2)在最优匹配下的模型损失。

3.4.1. 二分图匹配

我们知道DETR每次输出包含N=100个预测目标的集合,由于GT集合元素个数小于N,我们用\phi将GT集合元素个数填充至N个。那么预测集合与GT集合总的二分图匹配个数就有A_N^N个,我们所有匹配的集合设为\Sigma_N。我们要做的就是找到这个最优的匹配,公式如下图所示。

\hat{\sigma}=argmin\sum_i^NL_{match}\left(y_i,\hat{y}_{\sigma(i)}\right)

\hat{\sigma}即为最优匹配,y_i\hat{y}_{\sigma(i)}分别代表GT值和预测值。

以往的一些研究包括本论文都是使用的匈牙利算法 Hungarian algorithm 来计算最优匹配的。

3.4.2. 匹配后损失计算

有了最优的匹配\hat{\sigma}后,便要计算模型的损失,公式如下。

L_{Hungarian}\left(y,\hat{y}\right)=\sum_{i=1}^N\left[-log\:\hat{p}_{\hat{\sigma}(i)}\left(c_i\right)+1_{\left\{c_i\neq\phi\right\}}L_{box}\left(b_i,\hat{b}_{\hat{\sigma}(i)}\right)\right]$$ $$L_{box}\left(b_i,\hat{b}_{\hat{\sigma}(i)}\right)=\lambda_{iou}L_{iou}\left(b_i,\hat{b}_{\hat{\sigma}(i)}\right)+\lambda_{L1}\left|\left|b_i-\hat{b}_{\hat{\sigma}(i)}\right|\right|_1

其中y_i=(c_i,b_i),分别代表GT类别和bbox参数{x,y,w,h};在最优匹配\hat{\sigma}下,预测的类别分数和bbox参数分别为\hat{p}_{\hat{\sigma}(i)}\left(c_i\right)\hat{b}_{\hat{\sigma}}\left(i\right)

\lambda_{iou}\lambda_{L1}为超参数用于调节权重。

参考文献

End-to-end object detection with transformers

DETR目标检测新范式带来的思考 - 知乎

DETR(DEtection TRansformer)要点总结-CSDN博客

DETR 论文精读【论文精读】_哔哩哔哩_bilibili

相关文章:

DETR论文阅读

1. 动机 传统的目标检测任务需要大量的人工先验知识,例如预定义的先验anchor,NMS后处理策略等。这些人工先验知识引入了很多人为因素,且较难处理。如果能够端到端到直接生成目标检测结果,将会使问题变得很优雅。 2. 主要贡献 提…...

关于vite+vue3+ts项目中env.d.ts 文件详解

env.d.ts 文件是 Vite 项目中用于定义全局类型声明的 TypeScript 文件。它帮助开发者向 TypeScript提供全局的类型提示,特别是在使用一些特定于 Vite 的功能时(如 import.meta.env)。以下是详细讲解及代码示例 文章目录 **1. env.d.ts 文件的…...

如何优化Elasticsearch大文档查询?

记录一次业务复杂场景下DSL优化的过程 背景 B端商城业务有一个场景就是客户可见的产品列表是需要N多闸口及各种其它逻辑组合过滤的,各种闸口数据及产品数据都是存储在ES的(有的是独立索引,有的是作为产品属性存储在产品文档上)。 在实际使用的过程中&a…...

Kotlin Bytedeco OpenCV 图像图像54 透视变换 图像矫正

Kotlin Bytedeco OpenCV 图像图像54 透视变换 图像矫正 1 添加依赖2 测试代码3 测试结果 在OpenCV中,仿射变换(Affine Transformation)和透视变换(Perspective Transformation)是两种常用的图像几何变换方法。 变换方…...

Linux中DataX使用第一期

简介 DataX 是阿里云 DataWorks数据集成 的开源版本,在阿里巴巴集团内被广泛使用的离线数据同步工具/平台。DataX 实现了包括 MySQL、Oracle、OceanBase、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、Hologres、DRDS, databen…...

[Qt]事件-鼠标事件、键盘事件、定时器事件、窗口改变事件、事件分发器与事件过滤器

目录 前言:Qt与操作系统的关系 一、Qt事件 1.事件介绍 2.事件的表现形式 常见的Qt事件: 常见的事件描述: 3.事件的处理方式 处理鼠标进入和离开事件案例 控件添加到对象树底层原理 二、鼠标事件 1.鼠标按下和释放事件(单击&#x…...

关于机器学习的一份总结

在之前的文章中分别有详细的关于机器学习中某一学习算法的介绍,但缺少一个总体关于机器学习的总结,所以在这篇文中就是关于机器学习的一份总结。 在最近的日子中,人工智能日益火热起来,而机器学习是其中举足轻重的一部分&#xf…...

推荐一个开源的轻量级任务调度器!TaskScheduler!

大家好,我是麦鸽。 这次推荐一款轻量级的嵌入式任务调度器,目前已经有1.4K的star,这个项目比较轻量化,只有5个源文件,可以作为学习的一个开源项目。 核心文件 项目概述: 这是一个轻量级的协作式多任务处理&…...

【18】Word:明华中学-儿童医保❗

目录 题目​ NO2 NO3 NO4 NO5 NO6 NO7 NO8 NO9 题目 NO2 布局→页面设置对话框→纸张方向:横向→纸张大小:A3 ;页面设置对话框:直接输入纸张大小的宽度和高度即可→页面设置对话框:上下左右边距→版式&…...

如何用selenium来链接并打开比特浏览器进行自动化操作(1)

前言 本文是该专栏的第76篇,后面会持续分享python爬虫干货知识,记得关注。 本文,笔者将基于“比特浏览器”,通过selenium来实现链接并打开比特浏览器,进行相关的“自动化”操作。 值得一提的是,在本专栏之前,笔者有详细介绍过“使用selenium或者pyppeteer(puppeteer)…...

基于springboot+thymeleaf+Redis仿知乎网站问答项目源码

项目介绍 基于springbootthymeleafRedis仿知乎网站问答项目源码,可以作为毕业设计项目参考学习 按照需要一定动手能力 发文章,发视频,发想法,提问回答,注册登录 开发环境 使用技术:springbootthymeleafRe…...

读spring官方文档的一些关键知识点介绍

目录 bean definitionBeanPostProcessorBeanFactoryPostProcessorComponent and Further Stereotype AnnotationsAOP Concepts bean definition https://docs.spring.io/spring-framework/docs/5.1.3.RELEASE/spring-framework-reference/core.html#beans-child-bean-definiti…...

2024年AI与大数据技术趋势洞察:跨领域创新与社会变革

目录 引言 技术洞察 1. 大模型技术的创新与开源推动 2. AI Agent 智能体平台技术 3. 多模态技术的兴起:跨领域应用的新风口 4. 强化学习与推荐系统:智能化决策的底层驱动 5. 开源工具与平台的快速发展:赋能技术创新 6. 技术安全与伦理:AI技术的双刃剑 7. 跨领域技…...

ThinkPhp项目解决静态资源请求的跨域问题的解决思路

背景&#xff1a;我在前端使用vue语言开发的&#xff0c;请求的后端是用ThinkPhp项目开发的。我vue项目里的请求php接口&#xff0c;自带header参数的跨域问题通过网上查询到的server端配置方法已经解决了。我使用的 是中间件的配置方法&#xff1a; <?php//admin 项目 配…...

mybatis的多对一、一对多的用法

目录 1、使用VO聚合对象&#xff08;可以解决这两种情况&#xff09; 多对一&#xff1a; 一对多&#xff1a; 2、非聚合的多对一做法&#xff1a; 3、非聚合的一对多做法&#xff1a; 1、使用VO聚合对象&#xff08;可以解决这两种情况&#xff09; 当我需要多对一、一对…...

消息队列实战指南:三大MQ 与 Kafka 适用场景全解析

前言&#xff1a;在当今数字化时代&#xff0c;分布式系统和大数据处理变得愈发普遍&#xff0c;消息队列作为其中的关键组件&#xff0c;承担着系统解耦、异步通信、流量削峰等重要职责。ActiveMQ、RabbitMQ、RocketMQ 和 Kafka 作为市场上极具代表性的消息队列产品&#xff0…...

前端发送Ajax请求的技术Axios

目录 1.引入Axios文件 2.使用Axios发送请求 2.1请求方法的别名 请求的URL地址怎么来的&#xff1f; 后端实现 前后端交互 1.引入Axios文件 <script src"https://unpkg.com/axios/dist/axios.min.js"></script> 2.使用Axios发送请求 2.1请求方法的…...

第17章:Python TDD回顾与总结货币类开发

写在前面 这本书是我们老板推荐过的&#xff0c;我在《价值心法》的推荐书单里也看到了它。用了一段时间 Cursor 软件后&#xff0c;我突然思考&#xff0c;对于测试开发工程师来说&#xff0c;什么才更有价值呢&#xff1f;如何让 AI 工具更好地辅助自己写代码&#xff0c;或许…...

opencv_KDTree_搜索介绍及示例

cv::flann::KDTreeIndexParams 说明&#xff0c;使用&#xff1f; cv::flann::KDTreeIndexParams 是 OpenCV 中用于配置 KD 树&#xff08;K-Dimensional Tree&#xff09;索引参数的类。KD 树是一种用于多维空间中的点搜索的数据结构&#xff0c;常用于最近邻搜索等问题。在…...

Windows 上安装 MongoDB 的 zip 包

博主介绍&#xff1a; 大家好&#xff0c;我是想成为Super的Yuperman&#xff0c;互联网宇宙厂经验&#xff0c;17年医疗健康行业的码拉松奔跑者&#xff0c;曾担任技术专家、架构师、研发总监负责和主导多个应用架构。 近期专注&#xff1a; RPA应用研究&#xff0c;主流厂商产…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...