当前位置: 首页 > news >正文

使用Chrome和Selenium实现对Superset等私域网站的截图

最近遇到了一个问题,因为一些原因,我搭建的一个 Superset 的 Report 功能由于节假日期间不好控制邮件的发送,所以急需一个方案来替换掉 Superset 的 Report 功能

首先我们需要 Chrome 浏览器和 Chrome Driver,这是执行数据抓取的基石

Selenium 是一个用于自动化 Web 应用程序测试的工具,它可以帮助模拟用户在浏览器中的操作,如点击、输入文本、提交表单等

这样,我们就可以通过网页的验证,并进入 Superset 进行我们需要的截图了

1. 安装

1.1 在服务器安装Chrome

wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
apt install -y google-chrome-stable_current_amd64.deb
google-chrome --version

1.2 在服务器端安装Chrome Drive

在 这里可以查看你安装的stable版与对应的驱动, 上面查看版本可以看到我安装了132.0.6834.83版本,所以对应地,我需要下图中的版本。

wget https://storage.googleapis.com/chrome-for-testing-public/132.0.6834.83/linux64/chromedriver-linux64.zip
unzip chromedriver-linux64.zip
cp chromedriver-linux64/chromedriver /usr/bin/.

1.3 安装字体(针对中文网站)

在 这里 下载微软雅黑ttf格式字体。

将字体上传到服务器上,接着执行

mkdir -p /usr/share/fonts/chinese/
cp 微软雅黑.ttf /usr/share/fonts/chinese/
cd /usr/share/fonts/chinese/
fc-cache -fv
fc-list :lang=zh

也可只针对单用户

mkdir -p ~/.fonts
cp 微软雅黑.ttf ~/.fonts
fc-cache -fv
fc-list :lang=zh

2. 使用Selenium

没有安装 Selenium 的话,先使用pip安装

然后加载 driver

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.keys import Keys

如果是按照上面的流程安装的最新版的驱动的情况下, 使用下面一行即可加载驱动

driver = webdriver.Chrome()

如果安装的 Chrome 或者驱动较老,则可以尝试使用如下方式加载驱动

options = Options()
options.add_argument("--no-sandbox")  # Avoid using the sandbox mode
options.add_argument("--headless")  # Run Chrome in headless mode
options.add_argument("--single-process")
options.add_argument("--window-size=1920,1080")
driver = webdriver.Chrome(options=options)

2.1 确定登录所需信息

由于我们需要对私域网站截图,所以第一步需要先使用账号密码登录网站

Selenium 可以帮我们模拟输入文本和点击,但是前提需要我们找到输入框的所在位置,以及登录按钮所在的位置

由于在这里的id和class是唯一的, 所以我们可以使用 By.IDBy.CSS_SELECTOR 选择器直接选择

username_field = driver.find_element(By.ID, 'username')
password_field = driver.find_element(By.ID, 'password')
button = driver.find_element(By.CSS_SELECTOR, "input.btn.btn-primary.btn-block")

2.2 输入信息并点击登录

# 输入账户密码登录
import timeusername_field.send_keys(username)
password_field.send_keys(password)
button.click()
time.sleep(3)  # 等待登陆,等待时间视实际响应时间为准

2.3 根据需求截图并保存

在输入想截图的网站的网址后,我们可以选择只登录,或者登录并跳转。以某dashboard为例子,下面演示登录并跳转到某dashboard截图的例子

# 加载我们想加载的页面
driver.get(url)
time.sleep(15) # 等待页面加载完全,可以根据网页加载速度调整等待时间
width = driver.execute_script("return document.documentElement.scrollWidth")
height = driver.execute_script("return document.documentElement.scrollHeight")
driver.set_window_size(width, height)
driver.save_screenshot(save_path)
driver.quit()

上面的例子会动态根据长宽进行长截图,如果页面的长宽是确定的话,可以像下面一样执行

driver.set_window_size(1920, 1080)

3. 结语

最后,使用Selenium截图的效果还是非常不错的,当然前提是要保证对网站的访问是顺畅的,建议同服务器通过 127.0.0.1 访问会更加顺畅和稳定,否则可能会丢失信息或者干脆无响应

上面的实现思路对公域网站明显是可以直接适用的,其它私域网站参考 2.1 跳转到确定登录所需信息 修改后也仍适用

相关文章:

使用Chrome和Selenium实现对Superset等私域网站的截图

最近遇到了一个问题,因为一些原因,我搭建的一个 Superset 的 Report 功能由于节假日期间不好控制邮件的发送,所以急需一个方案来替换掉 Superset 的 Report 功能 首先我们需要 Chrome 浏览器和 Chrome Driver,这是执行数据抓取的…...

如何让大语言模型更好地理解科学文献?

论文地址:https://arxiv.org/pdf/2408.15545 引言 科学文献的理解对于提取目标信息和获取洞察至关重要,这显著推动了科学发现。尽管大语言模型(LLMs)在自然语言处理方面取得了显著成功,但在科学文献理解方面仍面临挑战…...

anaconda安装和环境配置

文章目录 一、Anaconda下载1.从官网直接下载:2.从镜像站中下载: 二、Anaconda安装三、检测是否有Anaconda配置anaconda环境 四、 Anaconda创建多个python环境(方便管理项目环境)1.查看conda有哪些环境2.创建python3.6的环境3.激活…...

Python基础学习(五)文件和异常

文件操作, 使用代码 来读写文件 1, 可以将数据保存到文件中, 2, 自动化, 测试数据在文件中保存的, 从文件中读取测试数据,进行自动化代码的执行 1.文件 文件: 可以存储在长期存储设备(硬盘, U盘)上的一段数据即为文件 1, 计算机只认识 二进制数据(0 和 1) 2, 所有的文件在计算…...

Mono里运行C#脚本29—mono_trampolines_init

一、概念解释 在计算机编程中,trampoline 通常是一段代码,它起到一个中间跳转的作用。它就像一个跳板,程序可以先跳转到这个跳板上,然后再从跳板跳转到最终的目的地。这种技术在许多不同的场景中都有应用,以下是一些主要方面: 函数调用方面: 当涉及到不同执行环境或不…...

从语音识别到图像识别:AI如何“看”和“听”

引言 随着人工智能技术的不断进步,AI的“听”和“看”能力正变得越来越强大。从语音识别到图像识别,AI不仅能够通过声音与我们互动,还能通过视觉理解和分析周围的世界。这些技术不仅改变了我们与机器的交互方式,也在各行各业中带…...

vue3+ts+uniapp 微信小程序(第一篇)—— 微信小程序定位授权,位置信息权限授权

文章目录 简介一、先看效果1.1 授权定位前,先弹出隐私协议弹框1.2 上述弹框点击同意,得到如下弹框1.3 点击三个点,然后点设置 1.4 在1.2步骤下,无论同意或者拒绝 二、manifest.json 文件配置三、微信公众平台配置3.1 登录进入微信…...

回归算法、聚类算法、决策树、随机森林、神经网络

这也太全了!回归算法、聚类算法、决策树、随机森林、神经网络、贝叶斯算法、支持向量机等十大机器学习算法一口气学完!_哔哩哔哩_bilibili 【线性回归、代价函数、损失函数】动画讲解_哔哩哔哩_bilibili 14分钟详解所有机器学习算法:…...

[Qt]系统相关-文件操作-QFile、QFileInfo类以及相关操作函数

目录 一、Qt文件系统 1.Qt文件系统的介绍 2.Qt文件类 二、Qt文件的操作 1.文件的打开 2.文件的读写操作 3.关闭操作 4.接口使用案例 5.获取文件的相关属性 三、文件的分类 1.文本文件 2.二进制文件 3.二者的区别 一、Qt文件系统 1.Qt文件系统的介绍 文件操作是所…...

C#高级:用Csharp操作鼠标和键盘

一、winform 1.实时获取鼠标位置 public Form1() {InitializeComponent();InitialTime(); }private void InitialTime() {// 初始化 Timer 控件var timer new System.Windows.Forms.Timer();timer.Interval 100; // 设置为 100 毫秒,即每 0.1 秒更新一次timer.…...

Mac 使用 GVM 管理多版本 Go 环境

使用 GVM 管理多版本 Go 环境 在本文中,我们将使用 gvm(Go Version Manager)工具管理本地多个 Go 语言版本。gvm 功能类似于 Python 的 Anaconda,可以方便地切换不同版本的 Go 环境,非常适合需要多版本开发与测试的场…...

25届合肥工业大学自动化考研复试攻略

本文内容,全部选自联盟自动化考研联盟企业店的:《合肥工业大学控制综合笔试篇》。后续会持续更新更多内容,记得关注哦~ 目录 Part1:复试指南具体内容 Part2:复试复习相关介绍 Part1:复试指南具体内容 1…...

【24】Word:小郑-准考证❗

目录 题目 准考证.docx 邮件合并-指定考生生成准考证 Word.docx 表格内容居中表格整体相较于页面居中 考试时一定要做一问保存一问❗ 题目 准考证.docx 插入→表格→将文本转换成表格→✔制表符→确定选中第一列→单击右键→在第一列的右侧插入列→布局→合并单元格&#…...

前瞻2024:前沿技术的全景洞察与深度剖析

在当今时代,前沿技术以前所未有的速度发展,深刻地改变着我们的生活、工作和社会的各个层面。从人工智能的迅猛发展到量子计算的逐步突破,从生物技术的不断创新到新能源技术的广泛应用,这些前沿技术正成为推动社会进步和经济发展的…...

告别手动编辑:如何用Python快速创建Ansible hosts文件?

在自动化运维领域,Ansible是一款非常强大的工具,它可以帮助我们管理和配置大量的服务器。为了让Ansible能够有效地管理这些服务器,我们需要一个hosts清单文件,该文件定义了Ansible要管理的目标主机。在实际应用中,我们…...

ESP32云开发二( http + led + lcd)

文章目录 前言先上效果图platformio.iniwokwi.tomldiagram.json源代码编译编译成功上传云端完结撒花⭐⭐⭐⭐⭐ 前言 阅读此篇前建议先看 此片熟悉下wokwi https://blog.csdn.net/qq_20330595/article/details/144289986 先上效果图 Column 1Column 2 platformio.ini wokwi…...

Java 基于微信小程序的原创音乐小程序设计与实现(附源码,部署,文档)

大家好,我是stormjun,今天为大家带来的是Java实战项目-基于微信小程序的原创音乐小程序设计与实现。该系统采用 Java 语言 开发,MySql 作为数据库,系统功能完善 ,实用性强 ,可供大学生实战项目参考使用。 博…...

JavaWeb开发(十五)实战-生鲜后台管理系统(二)注册、登录、记住密码

1. 生鲜后台管理系统-注册功能 1.1. 注册功能 (1)创建注册RegisterServlet,接收form表单中的参数。   (2)service创建一个userService处理业务逻辑。   (3)RegisterServlet将参数传递给ser…...

在stm32中C语言编写的程序中,一个整形数据是怎么存储的,高位在前还是低位在前

目录 举个例子 如何验证 小结 在 STM32(基于 ARM Cortex-M 架构)的系统中,默认是小端(Little Endian) 存储方式。也就是说,对于一个整型(例如 32 位 int),它的最低有效…...

Redis系列之底层数据结构字典Dict

Redis系列之底层数据结构字典Dict Dict数据结构 Dict是Redis数据结构中使用最为频繁的复合型数据结构,本质上是一个哈希表 查看redis6.0版本的源码,链接:https://github.com/redis/redis/blob/6.0/src/dict.h 哈希表的结构定义&#xff1…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...