当前位置: 首页 > news >正文

OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

使用左右检查来验证视差。矩阵 “cost” 应该由立体对应算法计算。
cv::validateDisparity 函数是 OpenCV 库中用于对立体匹配生成的视差图(disparity map)进行后处理的一个工具。其主要功能是对计算出的视差值进行验证,确保相邻像素间的视差值是合理的,并且符合左右图像的一致性检查。这有助于减少错误匹配和噪声,从而提高深度估计的准确性。

使用场景

  • 立体视觉应用:在需要高精度深度信息的应用中,如自动驾驶、机器人导航、增强现实等,使用 cv::validateDisparity 可以显著提高视差图的质量,进而提升系统的性能。
  • 3D重建:在基于立体图像的3D重建任务中,准确的视差图对于生成正确的三维模型至关重要。
  • 障碍物检测:在需要实时检测和避障的应用中,如无人机或自动机器人,高质量的视差图可以帮助更可靠地识别和避开障碍物。

函数原型

void cv::validateDisparity	
(InputOutputArray 	disparity,InputArray 	cost,int 	minDisparity,int 	numberOfDisparities,int 	disp12MaxDisp = 1 
)	

参数

  • InputOutputArray disparity:
    类型: 输入/输出参数
    说明: 这是待验证的视差图。它应该是一个单通道的矩阵,通常为 CV_16S 或 CV_32F 类型,表示每个像素点的视差值。经过 validateDisparity 处理后,不合理的视差值将被标记为无效(默认使用 CV_DISPARITY_INVALID_VALUE 或者用户定义的无效值)。
  • InputArray cost:
    类型: 输入参数
    说明: 代价体积(cost volume),由立体对应算法(如块匹配或半全局块匹配)计算得到。这个矩阵包含了每个可能的视差值的成本信息,帮助 validateDisparity 判断哪些视差值是可靠的。代价体积的尺寸应与 disparity 和 numberOfDisparities 对应。
  • int minDisparity:
    类型: 输入参数
    说明: 允许的最小视差值。所有低于这个值的视差都会被认为是无效的。这个参数定义了视差范围的下限。
  • int numberOfDisparities:
    类型: 输入参数
    说明: 在搜索范围内尝试的最大视差数量。视差的有效范围是从 minDisparity 到 minDisparity + numberOfDisparities - 1。这个参数定义了视差范围的上限,并且决定了代价体积的深度(即第三个维度的大小)。
  • int disp12MaxDisp = 1:
    类型: 输入参数(可选,默认值为 1)
    说明: 左右一致性检查中允许的最大差异。如果两个方向上的视差值差异超过了这个阈值,则认为该点的视差是不可靠的,并将其标记为无效。较大的值可能会容忍更多的误差,但也会导致更多的噪声通过验证。

代码示例

#include <iostream>
#include <opencv2/calib3d.hpp>  // 包含 validateDisparity 函数的头文件
#include <opencv2/opencv.hpp>
#include <opencv2/ximgproc/disparity_filter.hpp>  // 包含 WLS滤波器using namespace cv;
using namespace std;int main()
{// 读取左右图像 (假设为灰度图像)Mat imgL = imread( "/media/dingxin/data/study/OpenCV/sources/images/left.jpg", IMREAD_GRAYSCALE );Mat imgR = imread( "/media/dingxin/data/study/OpenCV/sources/images/right.jpg", IMREAD_GRAYSCALE );if ( imgL.empty() || imgR.empty() ){std::cout << "Could not open or find the images!" << std::endl;return -1;}// 创建 StereoSGBM 对象int minDisparity      = 0;int numDisparities    = 64;  // 必须是16的倍数int blockSize         = 5;int disp12MaxDiff     = 1;int uniquenessRatio   = 10;int speckleWindowSize = 100;int speckleRange      = 32;cv::Ptr< cv::StereoSGBM > sgbm = cv::StereoSGBM::create( minDisparity, numDisparities, blockSize, 8 * blockSize * blockSize, 32 * blockSize * blockSize, disp12MaxDiff, uniquenessRatio,speckleWindowSize, speckleRange, cv::StereoSGBM::MODE_SGBM_3WAY );// 计算视差图cv::Mat disparity;sgbm->compute( imgL, imgR, disparity );// 规范化视差图以进行显示cv::Mat disp;disparity.convertTo( disp, CV_8U, 255 / ( numDisparities * 16. ) );cv::imshow( "disparity", disp );cv::waitKey( 0 );return 0;
}

相关文章:

OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 使用左右检查来验证视差。矩阵 “cost” 应该由立体对应算法计算。 cv::validateDisparity 函数是 OpenCV 库中用于对立体匹配生成的视差图&…...

2025年新开局!谁在引领汽车AI风潮?

汽车AI革命已来。 在2025年伊始开幕的CES展上&#xff0c;AI汽车、AI座舱无疑成为了今年汽车行业的最大热点。其中不少车企在2025年CES上展示了其新一代AI座舱&#xff0c;为下一代智能汽车的人机交互、场景创新率先打样。 其中&#xff0c;东软集团也携带AI驱动、大数据支撑…...

Spring自定义BeanPostProcessor实现bean的代理Java动态代理知识

上文&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145241149 中大致了解了spring aop的代理的实现&#xff0c;其实就是有个BeanPostProcessor代理了bean对象。顺便复习下java代理相关知识 目录 自定义BeanPostProcessor实现aopJava动态代理知识动态代理的几…...

三篇物联网漏洞挖掘综述

由于物联网设备存在硬件资源受限、硬件复杂异构&#xff0c; 代码、文档未公开的问题&#xff0c; 物联网设备的漏洞挖掘存在较大的挑战&#xff1a; 硬件资源受限性: 通用动态二进分析技术需要在运行程序外围实施监控分析。由于物联网设备存储资源(存储)的受限性&#xff0c;…...

Pytorch深度学习指南 卷I --编程基础(A Beginner‘s Guide) 第1章 一个简单的回归

本章正式开始使用pytorch的接口来实现对应的numpy的学习的过程&#xff0c;来学习模型的实现&#xff0c;我们会介绍numpy是如何学习的&#xff0c;以及我们如何一步步的通过torch的接口来实现简单化的过程&#xff0c;优雅的展示我们的代码&#xff0c;已经我们的代码完成的事…...

【EXCEL_VBA_实战】多工作薄合并深入理解

工作背景&#xff1a;多个工作薄存在冲突的名称&#xff0c;需快速合并 困难点&#xff1a;工作表移动复制时&#xff0c;若有冲突的名称&#xff0c;会不断弹出对话框待人工确认 思路&#xff1a;利用代码确认弹出的对话框 关键代码&#xff1a;Application.DisplayAlerts …...

mysql之表的外键约束

MySQL表的外键约束详细介绍及代码示例 外键约束是数据库中用于维护数据完整性和一致性的重要机制。它确保一个表中的数据与另一个表中的数据相关联&#xff0c;防止无效的数据引用。本文将详细介绍了外键约束的各个方面&#xff0c;并通过具体的代码示例进行演示。 1. 外键约束…...

Tuning the Go HTTP Client Settings

记录一次Go HTTP Client TIME_WAIT的优化 业务流程 分析 通过容器监控发现服务到事件总线的负载均衡之间有大量的短链接&#xff0c;回看一下代码 发送请求的代码 func SendToKEvent(ev *KEvent) error {data, err : json.Marshal(ev.Data)if err ! nil {return err}log.Pri…...

第二十四课 Vue中子组件调用父组件数据

Vue中子组件调用父组件数据 Vue是不建议在不同的组件直接传递值的&#xff0c;我们需要使用props方法来进行组件间的值传递 子组件调用父组件数据 父模板的数据&#xff0c;子组件是无法直接调用的 无法直接调用 1&#xff09;组件调用顶级对象中的data <div class&quo…...

Jenkins-pipeline语法说明

一. 简述&#xff1a; Jenkins Pipeline 是一种持续集成和持续交付&#xff08;CI/CD&#xff09;工具&#xff0c;它允许用户通过代码定义构建、测试和部署流程。 二. 关于jenkinsfile&#xff1a; 1. Sections部分&#xff1a; Pipeline里的Sections通常包含一个或多个Direc…...

小米Vela操作系统开源:AIoT时代的全新引擎

小米近日正式开源了其物联网嵌入式软件平台——Vela操作系统&#xff0c;并将其命名为OpenVela。这一举动在AIoT&#xff08;人工智能物联网&#xff09;领域掀起了不小的波澜&#xff0c;也为开发者们提供了一个强大的AI代码生成器和开发平台。OpenVela项目源代码已托管至GitH…...

NodeJs如何做API接口单元测试? --【elpis全栈项目】

NodeJs API接口单元测试 api单元测试需要用到的 assert&#xff1a;断言库 (还要一些断言库比如:Chai)supertest&#xff1a; 模拟http请求 简单的例子&#xff1a; const express require(express); const supertest require(supertest); const assert require(assert);…...

bundletool来特定设备规范的json安装aab包

1、获取自己设备的设备规范json java -jar ./bundletool.jar get-device-spec --outputj:/device-spec.json 2、根据设备规范生成apks包 java -jar ./bundletool.jar build-apks --device-specj:/device-spec.json --bundleapp-dev-release.aab --output随便的文件名.apks -…...

2024年第十五届蓝桥杯青少组国赛(c++)真题—快速分解质因数

快速分解质因数 完整题目和在线测评可点击下方链接前往&#xff1a; 快速分解质因数_C_少儿编程题库学习中心-嗨信奥https://www.hixinao.com/tiku/cpp/show-3781.htmlhttps://www.hixinao.com/tiku/cpp/show-3781.html 若如其他赛事真题可自行前往题库中心查找&#xff0c;题…...

.Net Core微服务入门全纪录(四)——Ocelot-API网关(上)

系列文章目录 1、.Net Core微服务入门系列&#xff08;一&#xff09;——项目搭建 2、.Net Core微服务入门全纪录&#xff08;二&#xff09;——Consul-服务注册与发现&#xff08;上&#xff09; 3、.Net Core微服务入门全纪录&#xff08;三&#xff09;——Consul-服务注…...

chrome游览器JSON Formatter插件无效问题排查,FastJsonHttpMessageConverter导致Content-Type返回不正确

问题描述 chrome游览器又一款JSON插件叫JSON Formatter&#xff0c;游览器GET请求调用接口时&#xff0c;如果返回的数据是json格式&#xff0c;则会自动格式化展示&#xff0c;类似这样&#xff1a; 但是今天突然发现怎么也格式化不了&#xff0c;打开一个json文件倒是可以格…...

[Qt]系统相关-网络编程-TCP、UDP、HTTP协议

目录 前言 一、UDP网络编程 1.Qt项目文件 2.UDP类 QUdpSocket QNetworkDatagram 3.UDP回显服务器案例 细节 服务器设计 客户端设计 二、TCP网络编程 1.TCP类 QTcpServer QTcpSocket 2.TCP回显服务器案例 细节 服务器设计 客户端设计 三、HTTP客户端 1.HTTP…...

docker 安装 nginx 详解

在平常的开发工作中&#xff0c;我们经常会用到 nginx&#xff0c;那么在 docker 中 如何安装 nginx呢&#xff1f;又有哪些需要注意的事项呢&#xff1f;简单来说&#xff0c;第一步&#xff1a;拉取 nginx 镜像&#xff1b;第二步&#xff1a;创建 挂载目录并设置 nginx.conf…...

2025年大模型气象预测架构与商业化影响

随着人工智能技术,尤其是大模型(如深度学习、大规模神经网络)的飞速发展,气象预测的传统方法正在经历深刻变革。2025年,气象预测将借助大模型技术进入一个新的阶段。本文将从架构角度详细探讨2025年大模型在气象预测中的应用,并分析其对商业化的潜在影响。 一、2025年大模…...

基于51单片机和ESP8266(01S)、八位数码管、独立按键的WiFi定时器时钟

目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码1、延时函数2、定时器03、串口4、数码管扫描5、独立按键扫描 四、主函数总结 系列文章目录 前言 有三个版本&#xff1a; ①普中开发板版本1&#xff1a;28800bps11.0592MHz&#xff0c;12T ②普中开发板版本2&am…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...

CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?

在现代前端开发中&#xff0c;Utility-First (功能优先) CSS 框架已经成为主流。其中&#xff0c;Tailwind CSS 无疑是市场的领导者和标杆。然而&#xff0c;一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...

性能优化中,多面体模型基本原理

1&#xff09;多面体编译技术是一种基于多面体模型的程序分析和优化技术&#xff0c;它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象&#xff0c;通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中&#xff0…...