OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用
- 操作系统:ubuntu22.04
- OpenCV版本:OpenCV4.9
- IDE:Visual Studio Code
- 编程语言:C++11
算法描述
使用左右检查来验证视差。矩阵 “cost” 应该由立体对应算法计算。
cv::validateDisparity 函数是 OpenCV 库中用于对立体匹配生成的视差图(disparity map)进行后处理的一个工具。其主要功能是对计算出的视差值进行验证,确保相邻像素间的视差值是合理的,并且符合左右图像的一致性检查。这有助于减少错误匹配和噪声,从而提高深度估计的准确性。
使用场景
- 立体视觉应用:在需要高精度深度信息的应用中,如自动驾驶、机器人导航、增强现实等,使用 cv::validateDisparity 可以显著提高视差图的质量,进而提升系统的性能。
- 3D重建:在基于立体图像的3D重建任务中,准确的视差图对于生成正确的三维模型至关重要。
- 障碍物检测:在需要实时检测和避障的应用中,如无人机或自动机器人,高质量的视差图可以帮助更可靠地识别和避开障碍物。
函数原型
void cv::validateDisparity
(InputOutputArray disparity,InputArray cost,int minDisparity,int numberOfDisparities,int disp12MaxDisp = 1
)
参数
- InputOutputArray disparity:
类型: 输入/输出参数
说明: 这是待验证的视差图。它应该是一个单通道的矩阵,通常为 CV_16S 或 CV_32F 类型,表示每个像素点的视差值。经过 validateDisparity 处理后,不合理的视差值将被标记为无效(默认使用 CV_DISPARITY_INVALID_VALUE 或者用户定义的无效值)。 - InputArray cost:
类型: 输入参数
说明: 代价体积(cost volume),由立体对应算法(如块匹配或半全局块匹配)计算得到。这个矩阵包含了每个可能的视差值的成本信息,帮助 validateDisparity 判断哪些视差值是可靠的。代价体积的尺寸应与 disparity 和 numberOfDisparities 对应。 - int minDisparity:
类型: 输入参数
说明: 允许的最小视差值。所有低于这个值的视差都会被认为是无效的。这个参数定义了视差范围的下限。 - int numberOfDisparities:
类型: 输入参数
说明: 在搜索范围内尝试的最大视差数量。视差的有效范围是从 minDisparity 到 minDisparity + numberOfDisparities - 1。这个参数定义了视差范围的上限,并且决定了代价体积的深度(即第三个维度的大小)。 - int disp12MaxDisp = 1:
类型: 输入参数(可选,默认值为 1)
说明: 左右一致性检查中允许的最大差异。如果两个方向上的视差值差异超过了这个阈值,则认为该点的视差是不可靠的,并将其标记为无效。较大的值可能会容忍更多的误差,但也会导致更多的噪声通过验证。
代码示例
#include <iostream>
#include <opencv2/calib3d.hpp> // 包含 validateDisparity 函数的头文件
#include <opencv2/opencv.hpp>
#include <opencv2/ximgproc/disparity_filter.hpp> // 包含 WLS滤波器using namespace cv;
using namespace std;int main()
{// 读取左右图像 (假设为灰度图像)Mat imgL = imread( "/media/dingxin/data/study/OpenCV/sources/images/left.jpg", IMREAD_GRAYSCALE );Mat imgR = imread( "/media/dingxin/data/study/OpenCV/sources/images/right.jpg", IMREAD_GRAYSCALE );if ( imgL.empty() || imgR.empty() ){std::cout << "Could not open or find the images!" << std::endl;return -1;}// 创建 StereoSGBM 对象int minDisparity = 0;int numDisparities = 64; // 必须是16的倍数int blockSize = 5;int disp12MaxDiff = 1;int uniquenessRatio = 10;int speckleWindowSize = 100;int speckleRange = 32;cv::Ptr< cv::StereoSGBM > sgbm = cv::StereoSGBM::create( minDisparity, numDisparities, blockSize, 8 * blockSize * blockSize, 32 * blockSize * blockSize, disp12MaxDiff, uniquenessRatio,speckleWindowSize, speckleRange, cv::StereoSGBM::MODE_SGBM_3WAY );// 计算视差图cv::Mat disparity;sgbm->compute( imgL, imgR, disparity );// 规范化视差图以进行显示cv::Mat disp;disparity.convertTo( disp, CV_8U, 255 / ( numDisparities * 16. ) );cv::imshow( "disparity", disp );cv::waitKey( 0 );return 0;
}
相关文章:
OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 使用左右检查来验证视差。矩阵 “cost” 应该由立体对应算法计算。 cv::validateDisparity 函数是 OpenCV 库中用于对立体匹配生成的视差图&…...

2025年新开局!谁在引领汽车AI风潮?
汽车AI革命已来。 在2025年伊始开幕的CES展上,AI汽车、AI座舱无疑成为了今年汽车行业的最大热点。其中不少车企在2025年CES上展示了其新一代AI座舱,为下一代智能汽车的人机交互、场景创新率先打样。 其中,东软集团也携带AI驱动、大数据支撑…...

Spring自定义BeanPostProcessor实现bean的代理Java动态代理知识
上文:https://blog.csdn.net/qq_26437925/article/details/145241149 中大致了解了spring aop的代理的实现,其实就是有个BeanPostProcessor代理了bean对象。顺便复习下java代理相关知识 目录 自定义BeanPostProcessor实现aopJava动态代理知识动态代理的几…...
三篇物联网漏洞挖掘综述
由于物联网设备存在硬件资源受限、硬件复杂异构, 代码、文档未公开的问题, 物联网设备的漏洞挖掘存在较大的挑战: 硬件资源受限性: 通用动态二进分析技术需要在运行程序外围实施监控分析。由于物联网设备存储资源(存储)的受限性,…...
Pytorch深度学习指南 卷I --编程基础(A Beginner‘s Guide) 第1章 一个简单的回归
本章正式开始使用pytorch的接口来实现对应的numpy的学习的过程,来学习模型的实现,我们会介绍numpy是如何学习的,以及我们如何一步步的通过torch的接口来实现简单化的过程,优雅的展示我们的代码,已经我们的代码完成的事…...
【EXCEL_VBA_实战】多工作薄合并深入理解
工作背景:多个工作薄存在冲突的名称,需快速合并 困难点:工作表移动复制时,若有冲突的名称,会不断弹出对话框待人工确认 思路:利用代码确认弹出的对话框 关键代码:Application.DisplayAlerts …...
mysql之表的外键约束
MySQL表的外键约束详细介绍及代码示例 外键约束是数据库中用于维护数据完整性和一致性的重要机制。它确保一个表中的数据与另一个表中的数据相关联,防止无效的数据引用。本文将详细介绍了外键约束的各个方面,并通过具体的代码示例进行演示。 1. 外键约束…...

Tuning the Go HTTP Client Settings
记录一次Go HTTP Client TIME_WAIT的优化 业务流程 分析 通过容器监控发现服务到事件总线的负载均衡之间有大量的短链接,回看一下代码 发送请求的代码 func SendToKEvent(ev *KEvent) error {data, err : json.Marshal(ev.Data)if err ! nil {return err}log.Pri…...
第二十四课 Vue中子组件调用父组件数据
Vue中子组件调用父组件数据 Vue是不建议在不同的组件直接传递值的,我们需要使用props方法来进行组件间的值传递 子组件调用父组件数据 父模板的数据,子组件是无法直接调用的 无法直接调用 1)组件调用顶级对象中的data <div class&quo…...
Jenkins-pipeline语法说明
一. 简述: Jenkins Pipeline 是一种持续集成和持续交付(CI/CD)工具,它允许用户通过代码定义构建、测试和部署流程。 二. 关于jenkinsfile: 1. Sections部分: Pipeline里的Sections通常包含一个或多个Direc…...

小米Vela操作系统开源:AIoT时代的全新引擎
小米近日正式开源了其物联网嵌入式软件平台——Vela操作系统,并将其命名为OpenVela。这一举动在AIoT(人工智能物联网)领域掀起了不小的波澜,也为开发者们提供了一个强大的AI代码生成器和开发平台。OpenVela项目源代码已托管至GitH…...
NodeJs如何做API接口单元测试? --【elpis全栈项目】
NodeJs API接口单元测试 api单元测试需要用到的 assert:断言库 (还要一些断言库比如:Chai)supertest: 模拟http请求 简单的例子: const express require(express); const supertest require(supertest); const assert require(assert);…...
bundletool来特定设备规范的json安装aab包
1、获取自己设备的设备规范json java -jar ./bundletool.jar get-device-spec --outputj:/device-spec.json 2、根据设备规范生成apks包 java -jar ./bundletool.jar build-apks --device-specj:/device-spec.json --bundleapp-dev-release.aab --output随便的文件名.apks -…...

2024年第十五届蓝桥杯青少组国赛(c++)真题—快速分解质因数
快速分解质因数 完整题目和在线测评可点击下方链接前往: 快速分解质因数_C_少儿编程题库学习中心-嗨信奥https://www.hixinao.com/tiku/cpp/show-3781.htmlhttps://www.hixinao.com/tiku/cpp/show-3781.html 若如其他赛事真题可自行前往题库中心查找,题…...

.Net Core微服务入门全纪录(四)——Ocelot-API网关(上)
系列文章目录 1、.Net Core微服务入门系列(一)——项目搭建 2、.Net Core微服务入门全纪录(二)——Consul-服务注册与发现(上) 3、.Net Core微服务入门全纪录(三)——Consul-服务注…...

chrome游览器JSON Formatter插件无效问题排查,FastJsonHttpMessageConverter导致Content-Type返回不正确
问题描述 chrome游览器又一款JSON插件叫JSON Formatter,游览器GET请求调用接口时,如果返回的数据是json格式,则会自动格式化展示,类似这样: 但是今天突然发现怎么也格式化不了,打开一个json文件倒是可以格…...

[Qt]系统相关-网络编程-TCP、UDP、HTTP协议
目录 前言 一、UDP网络编程 1.Qt项目文件 2.UDP类 QUdpSocket QNetworkDatagram 3.UDP回显服务器案例 细节 服务器设计 客户端设计 二、TCP网络编程 1.TCP类 QTcpServer QTcpSocket 2.TCP回显服务器案例 细节 服务器设计 客户端设计 三、HTTP客户端 1.HTTP…...

docker 安装 nginx 详解
在平常的开发工作中,我们经常会用到 nginx,那么在 docker 中 如何安装 nginx呢?又有哪些需要注意的事项呢?简单来说,第一步:拉取 nginx 镜像;第二步:创建 挂载目录并设置 nginx.conf…...

2025年大模型气象预测架构与商业化影响
随着人工智能技术,尤其是大模型(如深度学习、大规模神经网络)的飞速发展,气象预测的传统方法正在经历深刻变革。2025年,气象预测将借助大模型技术进入一个新的阶段。本文将从架构角度详细探讨2025年大模型在气象预测中的应用,并分析其对商业化的潜在影响。 一、2025年大模…...

基于51单片机和ESP8266(01S)、八位数码管、独立按键的WiFi定时器时钟
目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码1、延时函数2、定时器03、串口4、数码管扫描5、独立按键扫描 四、主函数总结 系列文章目录 前言 有三个版本: ①普中开发板版本1:28800bps11.0592MHz,12T ②普中开发板版本2&am…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...

回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...