当前位置: 首页 > news >正文

【分布式日志篇】从工具选型到实战部署:全面解析日志采集与管理路径

在这里插入图片描述

网罗开发 (小红书、快手、视频号同名)

  大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。

图书作者:《ESP32-C3 物联网工程开发实战》
图书作者:《SwiftUI 入门,进阶与实战》
超级个体:COC上海社区主理人
特约讲师:大学讲师,谷歌亚马逊分享嘉宾
科技博主:极星会首批签约作者

文章目录

    • 摘要
    • 引言
    • 日志采集与管理的核心挑战
    • 分布式日志采集工具选型
    • Fluentd 的分布式日志采集实践
      • 环境准备
      • 配置示例
      • 启动 Fluentd
    • Logstash 的分布式日志处理实践
      • 安装与配置
      • 启动 Logstash
    • 可视化与管理
    • QA 环节
    • 总结
    • 参考资料

摘要

在分布式系统中,多个节点同时生成的海量日志需要集中管理与分析,以提高问题定位和系统运维的效率。本文将介绍分布式日志采集与管理的核心概念,深入探讨 Fluentd 和 Logstash 等工具的具体应用实践,并通过示例代码展示如何构建高效的日志平台。

引言

随着分布式系统和微服务架构的普及,日志的管理和分析变得尤为复杂。每个服务、每个节点都会产生大量日志,如何实现日志的实时采集、集中管理与快速查询,成为了现代运维的核心挑战。本文重点介绍如何利用 Fluentd 和 Logstash 两款主流工具解决这一问题,帮助开发者和运维工程师高效搭建日志管理平台。

日志采集与管理的核心挑战

  • 数据分散性:分布式系统中各节点生成的日志分布广泛。
  • 日志格式多样性:不同服务可能采用多种日志格式。
  • 高效性需求:需要快速处理和分析海量日志数据。
  • 稳定性:日志采集与管理系统自身需具备高可用性。

分布式日志采集工具选型

  • Fluentd:一个开源的日志采集工具,支持丰富的插件生态。
  • Logstash:Elastic Stack 的核心组件之一,支持复杂的日志处理管道。
  • 两者对比
    • Fluentd 更轻量,适用于资源受限的场景。
    • Logstash 功能更强大,适合与 Elasticsearch 集成的大规模部署。

Fluentd 的分布式日志采集实践

环境准备

  1. 安装 Fluentd:

    curl -L https://toolbelt.treasuredata.com/sh/install-redhat-td-agent3.sh | sh
    
  2. 配置 Fluentd 插件:

    td-agent-gem install fluent-plugin-elasticsearch
    

配置示例

创建 Fluentd 配置文件 fluentd.conf

<source>@type tailpath /var/log/app/*.logpos_file /var/log/td-agent/app.log.postag app.logsformat json
</source><match app.logs>@type elasticsearchhost 127.0.0.1port 9200logstash_format true
</match>

启动 Fluentd

运行 Fluentd:

td-agent -c fluentd.conf

Logstash 的分布式日志处理实践

安装与配置

  1. 安装 Logstash:

    wget https://artifacts.elastic.co/downloads/logstash/logstash-8.0.0-linux-x86_64.tar.gz
    tar -xzf logstash-8.0.0-linux-x86_64.tar.gz
    cd logstash-8.0.0
    
  2. 创建 Logstash 配置文件 logstash.conf

    input {file {path => "/var/log/app/*.log"start_position => "beginning"}
    }filter {grok {match => { "message" => "%{TIMESTAMP_ISO8601:timestamp} %{LOGLEVEL:loglevel} %{GREEDYDATA:message}" }}
    }output {elasticsearch {hosts => ["http://localhost:9200"]}
    }
    

启动 Logstash

运行 Logstash:

bin/logstash -f logstash.conf

可视化与管理

通过 Kibana 配置和可视化仪表板,监控日志数据的流入流出情况。

QA 环节

Q1: Fluentd 和 Logstash 之间如何选择?
A1: Fluentd 适合轻量场景,Logstash 适合高吞吐和复杂处理需求。

Q2: 如何提高日志采集系统的性能?
A2: 优化插件配置、使用多线程和分布式集群部署。

总结

本文详细介绍了分布式日志采集与管理的核心挑战与工具实践,通过 Fluentd 和 Logstash 的配置与代码示例,展示了如何搭建高效的日志平台。无论是轻量级需求还是复杂场景,这些工具都能有效提升日志管理能力。

未来展望

  • 引入 AI 和机器学习进行日志异常检测。
  • 实现更加实时的日志流分析。
  • 支持多云和混合云环境下的统一日志管理。

参考资料

  1. Fluentd 官方文档
  2. Logstash 官方指南
  3. Kibana 使用教程

相关文章:

【分布式日志篇】从工具选型到实战部署:全面解析日志采集与管理路径

网罗开发 &#xff08;小红书、快手、视频号同名&#xff09; 大家好&#xff0c;我是 展菲&#xff0c;目前在上市企业从事人工智能项目研发管理工作&#xff0c;平时热衷于分享各种编程领域的软硬技能知识以及前沿技术&#xff0c;包括iOS、前端、Harmony OS、Java、Python等…...

基于springcloud汽车信息分析与可视化系统

基于Spring Cloud的汽车信息分析与可视化系统是一款旨在整合、分析汽车相关数据并以直观可视化方式呈现的应用系统。 一、系统架构 该系统基于先进的Spring Cloud架构构建&#xff0c;充分利用其分布式、微服务特性&#xff0c;确保系统具备高可用性、可扩展性和灵活性。Spri…...

TOGAF之架构标准规范-信息系统架构 | 数据架构

TOGAF是工业级的企业架构标准规范&#xff0c;信息系统架构阶段是由数据架构阶段以及应用架构阶段构成&#xff0c;本文主要描述信息系统架构阶段中的数据架构阶段。 如上所示&#xff0c;信息系统架构&#xff08;Information Systems Architectures&#xff09;在TOGAF标准规…...

Databend x 沉浸式翻译 | 基于 Databend Cloud 构建高效低成本的业务数据分析体系

「沉浸式翻译」是一个非常流行的双语对照网页翻译扩展工具&#xff0c;用户可以用它来即时翻译外文网页、PDF 文档、ePub 电子书、字幕等。它不仅可以实现原文加译文实时双语对照显示&#xff0c;还支持 Google、OpenAI、DeepL、微软、Gemini、Claude 等数十家翻译平台服务的自…...

cuda的并行运算介绍

cuda是如何使用GPU并行运算的&#xff1a; 以一个函数为例&#xff1a; duplicateWithKeys << <(P 255) / 256, 256 >> > (P,geomState.means2D,geomState.depths,geomState.point_offsets,binningState.point_list_keys_unsorted,binningState.point_list_…...

「全网最细 + 实战源码案例」设计模式——抽象工厂模式

核心思想 抽象工厂模式是一种创建型设计模式&#xff0c;它提供一个接口&#xff0c;用于创建一系列相关或互相依赖的对象&#xff0c;而无需指定它们的具体类。抽象工厂模式解决了产品族的问题&#xff0c;可以管理和创建一组相关的产品。 结构 1. 抽象工厂 定义创建一些列…...

领域驱动设计(DDD)四 订单管理系统实践步骤

以下是基于 领域驱动设计&#xff08;DDD&#xff09; 的订单管理系统实践步骤&#xff0c;系统功能主要包括订单的创建、更新、查询和状态管理&#xff0c;采用 Spring Boot 框架进行实现。 1. 需求分析 订单管理系统的基本功能&#xff1a; 订单创建&#xff1a;用户下单创…...

leetcode 面试经典 150 题:简化路径

链接简化路径题序号71题型字符串解法栈难度中等熟练度✅✅✅ 题目 给你一个字符串 path &#xff0c;表示指向某一文件或目录的 Unix 风格 绝对路径 &#xff08;以 ‘/’ 开头&#xff09;&#xff0c;请你将其转化为 更加简洁的规范路径。 在 Unix 风格的文件系统中规则如下…...

基于 STM32 的智能农业温室控制系统设计

1. 引言 随着农业现代化的发展&#xff0c;智能农业温室控制系统对于提高农作物产量和质量具有重要意义。该系统能够实时监测温室内的环境参数&#xff0c;如温度、湿度、光照强度和土壤湿度等&#xff0c;并根据这些参数自动调节温室设备&#xff0c;如通风扇、加热器、加湿器…...

【Spring Boot】掌握 Spring 事务:隔离级别与传播机制解读与应用

前言 &#x1f31f;&#x1f31f;本期讲解关于spring 事务传播机制介绍~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 &#x1f386;那么废话…...

【Postgres_Python】使用python脚本将多个PG数据库合并为一个PG数据库

需要合并的多个PG数据库表个数和结构一致&#xff0c;这里提供一种思路&#xff0c;选择sql语句insert插入的方式进行&#xff0c;即将其他PG数据库的每个表内容插入到一个PG数据库中完成数据库合并 示例代码说明&#xff1a; 选择一个数据库导出表结构为.sql文件&#xff08…...

Tailwind CSS v4.0 发布

Holy shit its actually done &#xff01; 1 月 22 日&#xff0c;Tailwind CSS 正式发布了 4.0 版本&#xff0c;针对性能和灵活性进行了优化&#xff0c;重新构想了配置和定制体验&#xff0c;并充分利用了 Web 平台提供的最新进展。 新的高性能引擎- 完整构建速度提高 5 …...

pandas基础:文件的读取和写入

文件的读取和写入 读取csv文件 csv文件&#xff1a; name,age,city Alice,25,New York Bob,30,Los Angelesread_csv(filename) header&#xff1a;如 何处理文件的第一行。header0将第一行作为列名&#xff0c;headerNone表示文件中没有列名&#xff0c;所有行都是数据。 im…...

【MySQL — 数据库增删改查操作】深入解析MySQL的create insert 操作

数据库CRUD操作 1 CRUD简介 CURD是对数据库中的记录进行基本的增删改查操作: 2. Create 新增 语法 INSERT [INTO] table_name[(column [&#xff0c;column] ...)] VALUES(value_list)[&#xff0c;(value_list)] ... # value 后面的列的个数和类型&#xff0c;要和表结构匹配…...

每日OJ_牛客_小红的子串_滑动窗口+前缀和_C++_Java

目录 牛客_小红的子串_滑动窗口前缀和 题目解析 C代码 Java代码 牛客_小红的子串_滑动窗口前缀和 小红的子串 描述&#xff1a; 小红拿到了一个长度为nnn的字符串&#xff0c;她准备选取一段子串&#xff0c;满足该子串中字母的种类数量在[l,r]之间。小红想知道&…...

HTTP 配置与应用(局域网)

想做一个自己学习的有关的csdn账号&#xff0c;努力奋斗......会更新我计算机网络实验课程的所有内容&#xff0c;还有其他的学习知识^_^&#xff0c;为自己巩固一下所学知识&#xff0c;下次更新HTTP 配置与应用&#xff08;不同网段&#xff09;。 我是一个萌新小白&#xf…...

ultralytics 是什么?

ultralytics 是一个用于计算机视觉任务的 Python 库&#xff0c;专注于提供高效、易用的目标检测、实例分割和图像分类工具。它最著名的功能是实现 YOLO&#xff08;You Only Look Once&#xff09; 系列模型&#xff0c;特别是最新的 YOLOv8。 1. YOLO 是什么&#xff1f; YO…...

AI竞争:从技术壁垒到用户数据之争

标题&#xff1a;AI竞争&#xff1a;从技术壁垒到用户数据之争 文章信息摘要&#xff1a; AI市场呈现开放模型与封闭模型并存的双轨发展态势&#xff0c;但核心竞争力已从模型技术转向用户数据积累和使用习惯培养。商业模式正在多元化发展&#xff0c;从早期的价格战转向subsc…...

MySQL 主从复制(单组传统复制,GTID复制。双主复制)

案例环境 单组复制 master&#xff1a; 192.168.180.143 slave01&#xff1a;192.168.180.144 双组复制 master01&#xff1a;192.168.180.143 master02&#xff1a;192.168.180.144 案例过程 准备工作 关闭所有防火墙 setenforce 0 && systemctl stop firewa…...

python学opencv|读取图像(四十)掩模:三通道图像的局部覆盖

【1】引言 前序学习了使用numpy创建单通道的灰色图像&#xff0c;并对灰色图像的局部进行了颜色更改&#xff0c;相关链接为&#xff1a; python学opencv|读取图像&#xff08;九&#xff09;用numpy创建黑白相间灰度图_numpy生成全黑图片-CSDN博客 之后又学习了使用numpy创…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...