随机变量的变量替换——归一化流和直方图规定化的数学基础
变量替换是一种在统计学和数学中广泛应用的技术,它通过定义新的变量来简化问题,使得原本复杂的随机变量变得更加容易分析。
变量替换的公式,用于将一个随机变量 X X X 的概率密度函数 f X f_X fX 转换为其经过函数 g g g 变换后的随机变量 Y = g ( X ) Y=g(X) Y=g(X) 的概率密度函数 f Y f_Y fY。
定理(变量替换公式)
设 X X X 是一个概率密度函数为 f X f_X fX 的连续型随机变量,并设存在一个区间 I ⊂ R I \subset \mathbb{R} I⊂R 使得当 x ∉ I x \not\in I x∈I 时, f X ( x ) = 0 f_X(x)=0 fX(x)=0 (换句话说, X X X 只有在 I I I 中取值时,其概率密度函数才可能不为零,其中 I I I 可以是整个实直线)。设 g : I → R g: I \rightarrow \mathbb{R} g:I→R 是一个可微函数,其反函数是 h h h。除了在有限个点处的导数值可能为零外, g g g 的导数在 I I I 中始终为正或者始终为负。如果令 Y = g ( X ) Y=g(X) Y=g(X),那么通过函数 g g g 我们由随机变量 X X X 的概率密度函数得到随机变量 Y Y Y 的概率密度函数:
f Y ( y ) = f X ( h ( y ) ) ⋅ ∣ h ′ ( y ) ∣ f_Y(y) = f_X(h(y)) \cdot |h'(y)| fY(y)=fX(h(y))⋅∣h′(y)∣
这意味着,如果我们有一个连续型随机变量 X X X,并且我们知道它的概率密度函数 f X ( x ) f_X(x) fX(x),然后我们将 X X X 经过一个可微函数 g g g 变换得到新的随机变量 Y = g ( X ) Y=g(X) Y=g(X),那么 Y Y Y 的概率密度函数 f Y ( y ) f_Y(y) fY(y) 可以通过以下方式计算:
- 找到 g g g 的反函数 h h h,即 h ( y ) h(y) h(y) 满足 g ( h ( y ) ) = y g(h(y))=y g(h(y))=y;
- 计算 h ( y ) h(y) h(y) 的导数 h ′ ( y ) h'(y) h′(y);
- 将 f X ( x ) f_X(x) fX(x) 替换为 f X ( h ( y ) ) f_X(h(y)) fX(h(y)) 并乘以 ∣ h ′ ( y ) ∣ |h'(y)| ∣h′(y)∣ 得到 f Y ( y ) f_Y(y) fY(y)。
这个定理告诉我们如何通过一个“合适”的函数 g g g 将一个连续型随机变量 X X X 的概率密度函数 f X f_X fX 转换成另一个随机变量 Y = g ( X ) Y=g(X) Y=g(X) 的概率密度函数 f Y f_Y fY。
这个定理表明,当我们有一个连续型随机变量 X X X,并知道其概率密度函数 f X f_X fX,如果 g g g 是一个“合适的”函数,那么我们肯定能够求出 Y = g ( X ) Y=g(X) Y=g(X) 的概率密度函数 f Y f_Y fY。这里的“合适”指的是 g g g 必须满足以下条件:
- g g g 是可微的。
- g g g 的反函数 h h h 存在。
- g g g 的导数在 I I I 内部除有限个点外始终为正或始终为负。
这样,我们就可以使用变量替换公式将 X X X 的概率密度函数 f X f_X fX 转换为 Y Y Y 的概率密度函数 f Y f_Y fY,结果包含了 f X f_X fX 和 g g g 的组合式。这个公式告诉了我们这种转换的关系,并指出了哪些 g g g 是“合适的”。
注意,这里提到的 g g g 函数必须是可微的,并且其导数在给定区间内要么始终为正,要么始终为负,这是保证 h h h 存在且唯一的一个必要条件。此外, g g g 的导数在有限个点处可以为零,但在其他地方不能为零,否则 h h h 不会是一个单射函数,也就无法定义反函数。
简而言之,变量替换公式提供了一种方法,让我们能够通过一个可微的映射函数 g g g 把一个随机变量 X X X 的概率密度函数转换为另一个随机变量 Y = g ( X ) Y=g(X) Y=g(X) 的概率密度函数。
这个公式在概率论和统计学中非常重要,因为它允许我们通过简单的函数关系将复杂随机变量的概率密度函数转换成易于分析的形式。例如,在实际问题中,我们可能会遇到难以直接分析的概率密度函数,但是通过变量替换,我们可以将其转换为已知的概率密度函数,从而简化问题。
应用场景
-
概率分布的变换:
- 例如,如果有一个随机变量 X X X 服从某种分布(如正态分布),我们可以通过定义一个新的变量 Y = g ( X ) Y = g(X) Y=g(X) 来得到 Y Y Y 的分布。这在计算某些复杂分布的概率密度函数(PDF)或累积分布函数(CDF)时非常有用。直方图规定化的数学基础。
-
参数估计:
- 在进行参数估计时,有时直接对原始变量进行估计比较困难。通过变量替换,可以将问题转化为更简单的形式,从而更容易地找到合适的估计方法。归一化流的数学基础。
-
最优化问题:
- 在最优化问题中,变量替换可以帮助将非线性问题转化为线性问题,或者将约束条件简化,从而更容易求解。
图中展示的是直方图规定化关于变量替换公式的说明。
禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》
具体步骤
-
定义新变量:
- 假设原始变量为 X X X,定义一个新的变量 Y = g ( X ) Y = g(X) Y=g(X),其中 g g g 是一个适当的函数。
-
确定新变量的分布:
- 如果 X X X 的分布已知,可以通过变换公式推导出 Y Y Y 的分布。例如,如果 X X X 的概率密度函数为 f X ( x ) f_X(x) fX(x),则 Y Y Y 的概率密度函数 f Y ( y ) f_Y(y) fY(y) 可以通过以下公式计算:
f Y ( y ) = f X ( g − 1 ( y ) ) ∣ d d y g − 1 ( y ) ∣ f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| fY(y)=fX(g−1(y)) dydg−1(y) - 这里 g − 1 g^{-1} g−1 是 g g g 的逆函数, ∣ d d y g − 1 ( y ) ∣ \left| \frac{d}{dy} g^{-1}(y) \right| dydg−1(y) 是雅可比行列式的绝对值。
- 如果 X X X 的分布已知,可以通过变换公式推导出 Y Y Y 的分布。例如,如果 X X X 的概率密度函数为 f X ( x ) f_X(x) fX(x),则 Y Y Y 的概率密度函数 f Y ( y ) f_Y(y) fY(y) 可以通过以下公式计算:
-
分析新变量:
- 使用新变量 Y Y Y 进行进一步的分析,如计算期望值、方差、概率等。
示例
假设 X X X 服从标准正态分布 N ( 0 , 1 ) N(0, 1) N(0,1),我们定义一个新的变量 Y = X 2 Y = X^2 Y=X2。那么 Y Y Y 的分布可以通过以下步骤推导:
-
定义新变量:
- Y = X 2 Y = X^2 Y=X2
-
确定新变量的分布:
- X X X 的概率密度函数为 f X ( x ) = 1 2 π e − x 2 2 f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} fX(x)=2π1e−2x2
- 由于 Y = X 2 Y = X^2 Y=X2,所以 X = ± Y X = \pm \sqrt{Y} X=±Y
- 雅可比行列式 ∣ d d y y ∣ = 1 2 y \left| \frac{d}{dy} \sqrt{y} \right| = \frac{1}{2\sqrt{y}} dydy =2y1
- 因此, Y Y Y 的概率密度函数为:
f Y ( y ) = f X ( y ) ∣ 1 2 y ∣ + f X ( − y ) ∣ 1 2 y ∣ f_Y(y) = f_X(\sqrt{y}) \left| \frac{1}{2\sqrt{y}} \right| + f_X(-\sqrt{y}) \left| \frac{1}{2\sqrt{y}} \right| fY(y)=fX(y) 2y1 +fX(−y) 2y1
f Y ( y ) = 1 2 π e − y 2 ⋅ 1 2 y + 1 2 π e − y 2 ⋅ 1 2 y f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} \cdot \frac{1}{2\sqrt{y}} + \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} \cdot \frac{1}{2\sqrt{y}} fY(y)=2π1e−2y⋅2y1+2π1e−2y⋅2y1
f Y ( y ) = 1 2 π e − y 2 ⋅ 1 y f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} \cdot \frac{1}{\sqrt{y}} fY(y)=2π1e−2y⋅y1
f Y ( y ) = 1 2 π y e − y 2 f_Y(y) = \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}} fY(y)=2πy1e−2y
-
分析新变量:
- 通过上述推导,我们可以看到 Y Y Y 服从卡方分布 χ 2 ( 1 ) \chi^2(1) χ2(1)。
相关文章:

随机变量的变量替换——归一化流和直方图规定化的数学基础
变量替换是一种在统计学和数学中广泛应用的技术,它通过定义新的变量来简化问题,使得原本复杂的随机变量变得更加容易分析。 变量替换的公式,用于将一个随机变量 X X X 的概率密度函数 f X f_X fX 转换为其经过函数 g g g 变换后的随机变…...

Java春招面试指南前言
在当今竞争激烈的就业市场中,对于即将踏入职场的Java开发者而言,春招是一次宝贵的机会。本博客专栏旨在为大家提供一份全面且实用的Java春招面试指南,助力大家顺利通过面试,开启职业生涯的新篇章。 无论你是初出茅庐的应届生&…...

【技术洞察】2024科技绘卷:浪潮、突破、未来
涌动与突破 2024年,科技的浪潮汹涌澎湃,人工智能、量子计算、脑机接口等前沿技术如同璀璨星辰,方便了大家的日常生活,也照亮了人类未来的道路。这一年,科技的突破与创新不断刷新着人们对未来的想象。那么回顾2024年的科…...

为AI聊天工具添加一个知识系统 之54 为事务处理 设计 基于DDD的一个 AI操作系统 来处理维度
本文要点 要点 Architecture程序 它被设计为一个双面神结构的控制器,它的两侧一侧编译执行另一侧 解释执行,自已则是一个 翻译器--通过提供两个不同取向之间 的 结构映射的显示器(带 图形用户接口GUI和命令行接口CLI 两种 接口)…...

【数据结构】二分查找
🚩 WRITE IN FRONT 🚩 🔎 介绍:"謓泽"正在路上朝着"攻城狮"方向"前进四" 🔎🏅 荣誉:2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2222年获评…...

读书笔记《网络是怎样连接的》
目录 第一章1.1 生成http请求消息输入网址URL解析URLURL中省略文件名的情况http的基本思路生成HTTP请求消息发送请求后收到响应 1.2 向DNS服务器查询Web服务器的IP地址IP地址的基本知识域名和IP地址并用的理由Socket库提供查询IP地址的功能通过解析器向 DNS 服务器发出查询解析…...

Java 设计模式一
Java 设计模式是软件开发中的一类解决方案,旨在解决常见的设计问题,提升代码的可维护性、可复用性和扩展性。它们通常基于一些经验和最佳实践,提供了解决问题的标准化方法。以下是常见的 Java 设计模式及其概述: 1. 创建型模式 (…...

SOME/IP服务接口
本系列文章将分享我在学习 SOME/IP 过程中积累的一些感悟,并结合 SOME/IP 的理论知识进行讲解。主要内容是对相关知识的梳理,并结合实际代码展示 SOME/IP 的使用,旨在自我复习并与大家交流。文中引用了一些例图,但由于未能找到原作…...

Java 生成 PDF 文档 如此简单
嘿,朋友!在 Java 里实现 PDF 文档生成那可真是个挺有意思的事儿,今儿个就来好好唠唠这个。咱有不少好用的库可以选择,下面就给你详细讲讲其中两个超实用的库,一个是 iText,另一个是 Apache PDFBox。 用 iTe…...

深入探究 YOLOv5:从优势到模型导出全方位解析
一、引言 在计算机视觉领域,目标检测是一项至关重要的任务,它在自动驾驶、安防监控、工业检测等众多领域都有着广泛的应用。而 YOLO(You Only Look Once)系列作为目标检测算法中的佼佼者,一直备受关注。其中ÿ…...

【PoCL】运行 LLVM 中 pass 优化过程详解
PoCL 项目中调用 LLVM 的 Pass 对编译过程的优化至关重要。本博文以PoCL 开源项目源码为例,详细说明【PoCL】运行 LLVM 中 pass 优化过程 目录 0. 个人简介 && 授权须知1. pocl_llvm_run_pocl_passes 函数作用2. 禁止 “小网格 small grid” 工作组(workGroup)特化的…...

如何将使用unsloth微调的模型部署到ollama?
目录 一、将模型保存为gguf格式 二、下载llama.cpp 三、生成 llama-quantize 可执行文件 四、使用llama-quantize 五、训练模型 六、将模型部署到ollama 一、将模型保存为gguf格式 在你的训练代码 trainer.train() 之后添加: model.save_pretrained_gguf(&q…...

【测试】UI自动化测试
长期更新,建议关注收藏点赞! 目录 概论WEB环境搭建Selenium APPAppium 概论 使用工具和代码执行用例。 什么样的项目需要自动化? 需要回归测试、自动化的功能模块需求变更不频繁、项目周期长(功能测试时长:UI自动化测…...

SSM开发(二) MyBatis两种SQL配置方式及其对比
目录 一、MyBatis两种SQL配置方式 二、使用XML映射文件配置SQL语句 三、使用注解配置SQL语句 四、两种方式对比 总结 1、注解 2、XML配置 五、MyBatis多数据源的两种配置方式 参考 一、MyBatis两种SQL配置方式 MyBatis 提供了两种方式来配置SQL语句:注解&a…...

【Redis】在ubuntu上安装Redis
文章目录 提权搜索软件包安装修改配置文件ip保护模式配置密码 重新启动服务器使用 redis 自带的客户端来连接服务器 提权 先切换到 root 用户,su 命令切换到 root. 搜索软件包 使用 apt 命令来搜索 redis 相关的软件包 apt search redis 安装 使用 apt 命令安装 redisapt …...

JS-Web API -day06
一、正则表达式 正则表达式测试工具: http://tool.oschina.net/regex 1.1 正则表达式介绍与语法 正则表达式: 正则表达式(Regular Expression)是用于匹配字符串中字符组合的模式。在 JavaScript中,正则表达式也是对象。通常用来查…...

JS-Web API -day03
一、事件流 1.1 事件流与两个阶段说明 事件流 指的是事件完整执行过程中的流动路径 假设页面有个div标签,当触发事件时,会经历两个阶段,分别是捕获阶段、冒泡阶段 捕获阶段:Document - Element html - Elementbody - Element div…...

进程优先级
基本概念 cpu资源分配的先后顺序,就是指进程的优先权(priority)。 优先权⾼的进程有优先执⾏权利。配置进程优先权对多任务环境的linux很有⽤,可以改善系统性能;还可以把进程运⾏到指定的CPU上,这样⼀来&…...

c语言(转义字符)
前言: 内容: 然后记一下转义字符 \? 在书写连续多个问号时使用,防止他们被解析成三字母词 \ 用于表示字符常量 \\ 用于表示一个反斜杠,防止他被解析为一个转义序列符 \n 换行 \r …...

easyexcel读取写入excel easyexceldemo
1.新建springboot项目 2.添加pom依赖 <name>excel</name> <description>excelspringboot例子</description><parent> <groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId&…...

【人工智能数学基础篇】——深入详解矩阵分解:奇异值分解(SVD)与主成分分析(PCA)在数据降维与特征提取中的应用
目录 1. 引言 2. 矩阵分解概述 2.1 矩阵分解的意义 3. 奇异值分解(SVD) 3.1 定义与数学基础 3.2 SVD 的性质 3.3 SVD 在数据降维中的应用 3.4 示例代码:使用 SVD 进行图像压缩 3.5 结果分析 4. 主成分分析(PCA࿰…...

ThreeJS示例教程200+【目录】
Three.js 是一个强大的 JavaScript 库,旨在简化在网页上创建和展示3D图形的过程。它基于 WebGL 技术,但提供了比直接使用 WebGL 更易于使用的API,使得开发者无需深入了解 WebGL 的复杂细节就能创建出高质量的3D内容。 由于目前内容还不多,下面的内容暂时做一个占位。 文章目…...

DC-DC稳压电源——实战(基于Ti5450芯片)基础知识篇(1)
一:基础知识-耦合 1)去耦电容 (1)耦合与去耦 耦合:系统内部的各个部分之间存在相互依赖、相互影响、相互制约的情况。用人话说就是不同部分之间的相互影响。 去耦:自然就是消除不同部分之间的影响了。 &…...

pyrender 渲染mesh
目录 render_meshes函数 调用函数 render_meshes函数 def overlay_human_meshes(humans, K, model, img_pil, unique_colorFalse):# Color of humans seen in the image._color [color[0] for _ in range(len(humans))] if unique_color else color# Get focal and princpt …...

防火墙安全策略
目录 一.拓扑信息 二.需求分析 三.命令行详细配置信息 1.配置IP 2.交换机配置 3.修改安全区域 4.安全策略 四.web界面详细配置 1.配置IP和设置安全区域 2.交换机配置 3.安全策略 五.测试 一.拓扑信息 二.需求分析 1.VLAN 2属于办公区域;VLAN 3属于生…...

selenium clear()方法清除文本框内容
在使用Selenium进行Web自动化测试时,清除文本框内容是一个常见的需求。这可以通过多种方式实现,取决于你使用的是哪种编程语言(如Python、Java等)以及你的具体需求。以下是一些常见的方法: 1. 使用clear()方法 clear…...

(回溯分割)leetcode93 复原IP地址
#include<iostream> #include<vector> #include<string> #include<algorithm> using namespace std; //卡尔的图不是按照程序执行过程而是直接画程序会执行的过程 // 实际执行是:n个字符,递推n1后(叶子节点ÿ…...

高性能队列 Disruptor 在 IM 系统中的实战
高性能队列 Disruptor 在 IM 系统中的实战 前三期我们介绍了Disruptor的典型使用场景和相关高性能原理,本期我介绍一下Disruptor在IM系统用的应用实战,IM系统即社交聊天系统,对实时性的要求非常高,非常符合Disruptor的使用场景。 …...

原生HTML集合
一、表格 1、固定表格 <div class"tablebox"><div class"table-container"><table id"myTable" border"0" cellspacing"0" cellpadding"0"><thead><tr></tr></thead>…...

ES6 简单练习笔记--变量申明
一、ES5 变量定义 1.在全局作用域中 this 其实就是window对象 <script>console.log(window this) </script>输出结果: true 2.在全局作用域中用var定义一个变量其实就相当于在window上定义了一个属性 例如: var name "孙悟空" 其实就相当于执行了 win…...