当前位置: 首页 > news >正文

【机器学习】嘿马机器学习(科学计算库)第11篇:Pandas,学习目标【附代码文档】

本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图形种类及意义 Numpy 4.2 N维数组-ndarray 1 ndarray的属性 Numpy 4.4 ndarray运算 问题 Pandas 5.1Pandas介绍 1 Pandas介绍 Pandas 5.3 基本数据操作 1 索引操作 Pandas 5.6 文件读取与存储 1 CSV Pandas 5.8 高级处理-数据离散化 1 为什么要离散化 Pandas 5.12 案例 1 需求

完整笔记资料代码:https://gitee.com/yinuo112/AI/tree/master/机器学习/嘿马机器学习(科学计算库)/note.md

感兴趣的小伙伴可以自取哦~


全套教程部分目录:


部分文件图片:

Pandas

学习目标

  • 了解Numpy与Pandas的不同
  • 说明Pandas的Series与Dataframe两种结构的区别
  • 了解Pandas的MultiIndex与panel结构
  • 应用Pandas实现基本数据操作
  • 应用Pandas实现数据的合并
  • 应用crosstab和pivot_table实现交叉表与透视表
  • 应用groupby和聚合函数实现数据的分组与聚合
  • 了解Pandas的plot画图功能
  • 应用Pandas实现数据的读取和存储

5.8 高级处理-数据离散化

学习目标

  • 目标

  • 应用cut、qcut实现数据的区间分组

  • 应用get_dummies实现数据的one-hot编码

1 为什么要离散化

连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具。

2 什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值。

离散化有很多种方法,这使用一种最简单的方式去操作

  • 原始人的身高数据:165,174,160,180,159,163,192,184
  • 假设按照身高分几个区间段:150~165, 165~180,180~195

这样我们将数据分到了三个区间段,我可以对应的标记为矮、中、高三个类别,最终要处理成一个"哑变量"矩阵

3 股票的涨跌幅离散化

我们对股票每日的"p_change"进行离散化

哑变量矩阵

3.1 读取股票的数据

先读取股票的数据,筛选出p_change数据

data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']

3.2 将股票涨跌幅数据进行分组

股票涨跌幅分组

使用的工具:

  • pd.qcut(data, q):

  • 对数据进行分组将数据分组,一般会与value_counts搭配使用,统计每组的个数

  • series.value_counts():统计分组次数

# 自行分组qcut = pd.qcut(p_change, 10)# 计算分到每个组数据个数qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)
# 自己指定分组区间bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)

3.3 股票涨跌幅分组数据变成one-hot编码

  • 什么是one-hot编码

把每个类别生成一个布尔列,这些列中只有一列可以为这个样本取值为1.其又被称为独热编码。

把下图中左边的表格转化为使用右边形式进行表示:

image-20190316224151504

  • pandas.get_dummies(data, prefix=None)

  • data:array-like, Series, or DataFrame

  • prefix:分组名字

# 得出one-hot编码矩阵dummies = pd.get_dummies(p_counts, prefix="rise")

哑变量矩阵

4 小结

  • 数据离散化【知道】

  • 可以用来减少给定连续属性值的个数

  • 在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数值代表落在每个子区间中的属性值。

  • qcut、cut实现数据分组【知道】

  • qcut:大致分为相同的几组

  • cut:自定义分组区间

  • get_dummies实现哑变量矩阵【知道】

5.9 高级处理-合并

学习目标

  • 目标

  • 应用pd.concat实现数据的合并

  • 应用pd.merge实现数据的合并

如果你的数据由多张表组成,那么有时候需要将不同的内容合并在一起分析

1 pd.concat实现数据合并

  • pd.concat([data1, data2], axis=1)

  • 按照行或列进行合并,axis=0为列索引,axis=1为行索引

比如我们将刚才处理好的one-hot编码与原数据合并

股票哑变量合并

# 按照行索引进行pd.concat([data, dummies], axis=1)

2 pd.merge

  • pd.merge(left, right, how='inner', on=None)

  • 可以指定按照两组数据的共同键值对合并或者左右各自

  • left: DataFrame
  • right: 另一个DataFrame
  • on: 指定的共同键
  • how:按照什么方式连接
Merge methodSQL Join NameDescription
leftLEFT OUTER JOINUse keys from left frame only
rightRIGHT OUTER JOINUse keys from right frame only
outerFULL OUTER JOINUse union of keys from both frames
innerINNER JOINUse intersection of keys from both frames

2.1 pd.merge合并

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],'key2': ['K0', 'K1', 'K0', 'K1'],'A': ['A0', 'A1', 'A2', 'A3'],'B': ['B0', 'B1', 'B2', 'B3']})right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],'key2': ['K0', 'K0', 'K0', 'K0'],'C': ['C0', 'C1', 'C2', 'C3'],'D': ['D0', 'D1', 'D2', 'D3']})# 默认内连接result = pd.merge(left, right, on=['key1', 'key2'])

内连接

  • 左连接
result = pd.merge(left, right, how='left', on=['key1', 'key2'])

左连接

  • 右连接
result = pd.merge(left, right, how='right', on=['key1', 'key2'])

右连接

  • 外链接
result = pd.merge(left, right, how='outer', on=['key1', 'key2'])

外链接

3 总结

  • pd.concat([数据1, 数据2], axis=**)【知道】
  • pd.merge(left, right, how=, on=)【知道】

  • how -- 以何种方式连接

  • on -- 连接的键的依据是哪几个

5.10 高级处理-交叉表与透视表

学习目标

  • 目标

  • 应用crosstab和pivot_table实现交叉表与透视表


1 交叉表与透视表什么作用

探究股票的涨跌与星期几有关?

以下图当中表示,week代表星期几,1,0代表这一天股票的涨跌幅是好还是坏,里面的数据代表比例

可以理解为所有时间为星期一等等的数据当中涨跌幅好坏的比例

交叉表透视表作用

crosstab

  • 交叉表:交叉表用于计算一列数据对于另外一列数据的分组个数(用于统计分组频率的特殊透视表)
  • pd.crosstab(value1, value2)

  • 透视表:透视表是将原有的DataFrame的列分别作为行索引和列索引,然后对指定的列应用聚集函数

  • data.pivot_table()

    • DataFrame.pivot_table([], index=[])

2 案例分析

2.1 数据准备

  • 准备两列数据,星期数据以及涨跌幅是好是坏数据
  • 进行交叉表计算
# 寻找星期几跟股票张得的关系# 1、先把对应的日期找到星期几date = pd.to_datetime(data.index).weekday
data['week'] = date# 2、假如把p_change按照大小去分个类0为界限data['posi_neg'] = np.where(data['p_change'] > 0, 1, 0)# 通过交叉表找寻两列数据的关系count = pd.crosstab(data['week'], data['posi_neg'])

但是我们看到count只是每个星期日子的好坏天数,并没有得到比例,该怎么去做?

  • 对于每个星期一等的总天数求和,运用除法运算求出比例
# 算数运算,先求和sum = count.sum(axis=1).astype(np.float32)# 进行相除操作,得出比例pro = count.div(sum, axis=0)

2.2 查看效果

使用plot画出这个比例,使用stacked的柱状图

pro.plot(kind='bar', stacked=True)
plt.show()

2.3 使用pivot_table(透视表)实现

使用透视表,刚才的过程更加简单

# 通过透视表,将整个过程变成更简单一些data.pivot_table(['posi_neg'], index='week')

3 小结

  • 交叉表与透视表的作用【知道】

  • 交叉表:计算一列数据对于另外一列数据的分组个数

  • 透视表:指定某一列对另一列的关系

5.11 高级处理-分组与聚合

学习目标

  • 目标

  • 应用groupby和聚合函数实现数据的分组与聚合


分组与聚合通常是分析数据的一种方式,通常与一些统计函数一起使用,查看数据的分组情况

想一想其实刚才的交叉表与透视表也有分组的功能,所以算是分组的一种形式,只不过他们主要是计算次数或者计算比例!!看其中的效果:

分组效果

1 什么分组与聚合

分组聚合原理

2 分组API

  • DataFrame.groupby(key, as_index=False)

  • key:分组的列数据,可以多个

  • 案例:不同颜色的不同笔的价格数据

col =pd.DataFrame({'color': ['white','red','green','red','green'], 'object': ['pen','pencil','pencil','ashtray','pen'],'price1':[5.56,4.20,1.30,0.56,2.75],'price2':[4.75,4.12,1.60,0.75,3.15]})color    object    price1    price2
0    white    pen    5.56    4.75
1    red    pencil    4.20    4.12
2    green    pencil    1.30    1.60
3    red    ashtray    0.56    0.75
4    green    pen    2.75    3.15
  • 进行分组,对颜色分组,price进行聚合
# 分组,求平均值col.groupby(['color'])['price1'].mean()
col['price1'].groupby(col['color']).mean()color
green    2.025
red      2.380
white    5.560
Name: price1, dtype: float64# 分组,数据的结构不变col.groupby(['color'], as_index=False)['price1'].mean()color    price1
0    green    2.025
1    red    2.380
2    white    5.560

3 星巴克零售店铺数据

现在我们有一组关于全球星巴克店铺的统计数据,如果我想知道美国的星巴克数量和中国的哪个多,或者我想知道中国每个省份星巴克的数量的情况,那么应该怎么办?

数据来源:[

星巴克数据

3.1 数据获取

从文件中读取星巴克店铺数据

# 导入星巴克店的数据starbucks = pd.read_csv("./data/starbucks/directory.csv")

3.2 进行分组聚合

# 按照国家分组,求出每个国家的星巴克零售店数量count = starbucks.groupby(['Country']).count()

画图显示结果

count['Brand'].plot(kind='bar', figsize=(20, 8))
plt.show()

星巴克数量画图

假设我们加入省市一起进行分组

# 设置多个索引,set_index()starbucks.groupby(['Country', 'State/Province']).count()

国家省市分组结果

仔细观察这个结构,与我们前面讲的哪个结构类似??

与前面的MultiIndex结构类似

4 小结

  • groupby进行数据的分组【知道】

  • pandas中,抛开聚合谈分组,无意义

相关文章:

【机器学习】嘿马机器学习(科学计算库)第11篇:Pandas,学习目标【附代码文档】

本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原…...

WordPress Fancy Product Designer插件Sql注入漏洞复现(CVE-2024-51818)(附脚本)

免责申明: 本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。 0x0…...

StarRocks强大的实时数据分析

代码仓库:https://github.com/StarRocks/starrocks?tabreadme-ov-file StarRocks | A High-Performance Analytical Database 快速开始:StarRocks | StarRocks StarRocks 是一款高性能分析型数据仓库,使用向量化、MPP 架构、CBO、智能物化…...

Linux(Centos 7.6)命令详解:iconv

1.命令作用 将给定文件的编码从一种编码转换为另一种编码(Convert encoding of given files from one encoding to another) 2.命令语法 Usage: iconv [OPTION...] [FILE...] 3.参数详解 OPTION: 输入/输出格式规范: -f, --from-codeNAME,原始文本编码-t, --t…...

SpringBoot读取配置优先级顺序是什么?

Spring Boot外部化配置详解 目录 引言Spring Boot外部化配置概述配置加载优先级配置加载顺序详解实际案例总结 引言 Spring Boot因其“开箱即用”的特性,极大地简化了Java应用的开发和部署过程。它通过外部化配置机制,允许开发者根据不同的环境&#x…...

VScode连接远程Linux服务器环境配置

一、安装vscode 下载链接:Visual Studio Code - Code Editing. Redefined,点击下载安装即可 安装: 双击安装 选择安装位置,一直点击下一步即可 二、环境配置 1.中文汉化包 2.安装remote-ssh,用于远程连接 2.1安装 2…...

梯度下降法 (Gradient Descent) 算法详解及案例分析

梯度下降法 (Gradient Descent) 算法详解及案例分析 目录 梯度下降法 (Gradient Descent) 算法详解及案例分析1. 引言2. 梯度下降法 (Gradient Descent) 算法原理2.1 基本概念2.2 算法步骤2.3 梯度下降法的变种3. 梯度下降法的优势与局限性3.1 优势3.2 局限性4. 案例分析4.1 案…...

docker 部署 java 项目详解

在平常的开发工作中,我们经常需要部署项目,开发测试完成后,最关键的一步就是部署。今天我们以若依项目为例,总结下部署项目的整体流程。简单来说,第一步:安装项目所需的中间件;第二步&#xff1…...

npm install 报错:Command failed: git checkout 2.2.0-c

[TOC](npm install 报错:Command failed: git checkout 2.2.0-c) npm install 报错:Command failed: git checkout 2.2.0-c export NODE_HOME/usr/local/node-v14.14.0-linux-x64 npm config set registry https://registry.npmmirror.com 使用如上环…...

Vue基础(2)

19、组件之间传递数据 组件与组件之间不是完全独立的&#xff0c;而是有交集的&#xff0c;那就是组件与组 件之间是可以传递数据的 传递数据的解决方案就是 props ComponentA.vue <template><!-- 使用ComponentB组件&#xff0c;并传递title属性 --><h3>…...

(长期更新)《零基础入门 ArcGIS(ArcScene) 》实验七----城市三维建模与分析(超超超详细!!!)

城市三维建模与分析 三维城市模型已经成为一种非常普遍的地理空间数据资源,成为城市的必需品,对城市能化管理至关重要。语义信息丰富的三维城市模型可以有效实现不同领域数据与IS相信息的高层次集成及互操作,从而在城市规划、环境模拟、应急响应和辅助决策等众多领域公挥作用、…...

war包 | Docker部署flowable-ui

文章目录 引言I war包部署flowable-ui下载war包配置Tomcat访问 flowable-uiII Docker启动flowable-ui并修改配置Docker启动flowable-ui修改配置访问Flowable UI界面。III 知识扩展加速源docker run -i -t -d 参数引言 Flowable 支持 BPMN 2.0 行业标准,同时提供了一些 Flowab…...

Java数据结构方面的面试试题以及答案解析

Java数据结构是在计算机中存储和组织数据的方式&#xff0c;用于高效地处理和管理数据。 以下是一些常见的Java数据结构&#xff1a; 数组&#xff08;Array&#xff09;&#xff1a;一种线性数据结构&#xff0c;允许通过索引快速访问元素。它存储固定大小的相同类型的元素集…...

Qt 5.14.2 学习记录 —— 십구 事件

文章目录 1、事件的概念2、处理事件3、鼠标事件1、鼠标单击和双击2、鼠标移动3、鼠标滚轮滚动 4、键盘事件5、定时器事件6、窗口移动和大小改变事件 1、事件的概念 用户进行操作时会产生事件&#xff0c;事件可以关联处理函数。Qt封装了操作系统的事件机制&#xff0c;然后进一…...

国产编辑器EverEdit - 命令窗口应用详解

1 命令窗口应用详解 1.1 应用场景 有时需要在EverEdit中执行一些命令行工具&#xff0c;甚至想把当前文档做为参数&#xff0c;传递给命令进行一些文本分析&#xff0c;比如&#xff1a;一些常用的文本处理工具&#xff0c;gawk.exe等。 1.2 使用方法 命令窗口的使用在官方手…...

iOS开发设计模式篇第二篇MVVM设计模式

目录 一、什么是MVVM 二、MVVM 的主要特点 三、MVVM 的架构图 四、MVVM 与其他模式的对比 五、如何在iOS中实现MVVM 1.Model 2.ViewModel 3.View (ViewController) 4.双向绑定 5.文中完整的代码地址 六、MVVM 的优缺点 1.优点 2.缺点 七、MVVM 的应用场景 八、结…...

【深度学习】3.损失函数的作用

损失函数的作用 假设把猫这张图片分成四个像素点&#xff0c;分别为&#xff1a;56、231、24、2&#xff08;实际应该是三维的&#xff0c;因为还有颜色通道的维度&#xff0c;这里简化成二维&#xff09;。 像素点拿到以后&#xff0c;进行三分类&#xff0c;粉红色为第一组W…...

深入MapReduce——计算模型设计

引入 通过引入篇&#xff0c;我们可以总结&#xff0c;MapReduce针对海量数据计算核心痛点的解法如下&#xff1a; 统一编程模型&#xff0c;降低用户使用门槛分而治之&#xff0c;利用了并行处理提高计算效率移动计算&#xff0c;减少硬件瓶颈的限制 优秀的设计&#xff0c…...

小黑日常积累:学习了CROSS APPLY字段,将sqlserver中字段通过分隔符拆分并统计

问题 字段中的元素是通过分隔符进行拼接的&#xff0c;我需要统计元素的个数&#xff0c;例如: 代码 样例表创建 -- 创建样例表 create table #Tmp_Table (ID int IDENTITY (1,1) not null,Strs nvarchar(50),primary key (ID) ); insert into #Tmp_Table (Strs) VALUES…...

WebSocket知识点笔记(一)

WebSocket ​ WebSocket是一种在单个TCP连接上进行全双工通信的协议。它使得客户端和服务端之间的消息传递更加高效&#xff0c;允许服务器主动向客户端推送数据。 一.WebSocket全双工通信 WebSocket提供了真正的双向通信&#xff0c;客户端和服务端可以同时发送和接收消息 …...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...