当前位置: 首页 > news >正文

梯度下降法 (Gradient Descent) 算法详解及案例分析

梯度下降法 (Gradient Descent) 算法详解及案例分析

目录

  • 梯度下降法 (Gradient Descent) 算法详解及案例分析
    • 1. 引言
    • 2. 梯度下降法 (Gradient Descent) 算法原理
      • 2.1 基本概念
      • 2.2 算法步骤
      • 2.3 梯度下降法的变种
    • 3. 梯度下降法的优势与局限性
      • 3.1 优势
      • 3.2 局限性
    • 4. 案例分析
      • 4.1 案例1: 线性回归
        • 4.1.1 问题描述
        • 4.1.2 代码实现
        • 4.1.3 流程图
        • 4.1.4 优化曲线
      • 4.2 案例2: 逻辑回归
        • 4.2.1 问题描述
        • 4.2.2 代码实现
        • 4.2.3 流程图
        • 4.2.4 优化曲线
      • 4.3 案例3: 神经网络训练
        • 4.3.1 问题描述
        • 4.3.2 代码实现
        • 4.3.3 流程图
        • 4.3.4 优化曲线
    • 5. 总结
    • 6. 参考文献


1. 引言

梯度下降法 (Gradient Descent, GD) 是机器学习和深度学习中最为基础和常用的优化算法之一。它通过迭代更新模型参数,沿着目标函数的负梯度方向逐步逼近最优解。梯度下降法广泛应用于线性回归、逻辑回归、神经网络等模型的训练中。

本文将详细介绍梯度下降法的原理,并通过三个具体案例展示其在实际问题中的应用。每个案例将提供完整的 Python 实现代码、流程图以及优化曲线。


2. 梯度下降法 (Gradient Descent) 算法原理

2.1 基本概念

梯度下降法的核心思想是通过计算目标函数的梯度(即一阶导数),沿着梯度的反方向更新参数,从而逐步减小目标函数的值。

2.2 算法步骤

  1. 初始化:随机初始化模型参数 θ

相关文章:

梯度下降法 (Gradient Descent) 算法详解及案例分析

梯度下降法 (Gradient Descent) 算法详解及案例分析 目录 梯度下降法 (Gradient Descent) 算法详解及案例分析1. 引言2. 梯度下降法 (Gradient Descent) 算法原理2.1 基本概念2.2 算法步骤2.3 梯度下降法的变种3. 梯度下降法的优势与局限性3.1 优势3.2 局限性4. 案例分析4.1 案…...

docker 部署 java 项目详解

在平常的开发工作中,我们经常需要部署项目,开发测试完成后,最关键的一步就是部署。今天我们以若依项目为例,总结下部署项目的整体流程。简单来说,第一步:安装项目所需的中间件;第二步&#xff1…...

npm install 报错:Command failed: git checkout 2.2.0-c

[TOC](npm install 报错:Command failed: git checkout 2.2.0-c) npm install 报错:Command failed: git checkout 2.2.0-c export NODE_HOME/usr/local/node-v14.14.0-linux-x64 npm config set registry https://registry.npmmirror.com 使用如上环…...

Vue基础(2)

19、组件之间传递数据 组件与组件之间不是完全独立的&#xff0c;而是有交集的&#xff0c;那就是组件与组 件之间是可以传递数据的 传递数据的解决方案就是 props ComponentA.vue <template><!-- 使用ComponentB组件&#xff0c;并传递title属性 --><h3>…...

(长期更新)《零基础入门 ArcGIS(ArcScene) 》实验七----城市三维建模与分析(超超超详细!!!)

城市三维建模与分析 三维城市模型已经成为一种非常普遍的地理空间数据资源,成为城市的必需品,对城市能化管理至关重要。语义信息丰富的三维城市模型可以有效实现不同领域数据与IS相信息的高层次集成及互操作,从而在城市规划、环境模拟、应急响应和辅助决策等众多领域公挥作用、…...

war包 | Docker部署flowable-ui

文章目录 引言I war包部署flowable-ui下载war包配置Tomcat访问 flowable-uiII Docker启动flowable-ui并修改配置Docker启动flowable-ui修改配置访问Flowable UI界面。III 知识扩展加速源docker run -i -t -d 参数引言 Flowable 支持 BPMN 2.0 行业标准,同时提供了一些 Flowab…...

Java数据结构方面的面试试题以及答案解析

Java数据结构是在计算机中存储和组织数据的方式&#xff0c;用于高效地处理和管理数据。 以下是一些常见的Java数据结构&#xff1a; 数组&#xff08;Array&#xff09;&#xff1a;一种线性数据结构&#xff0c;允许通过索引快速访问元素。它存储固定大小的相同类型的元素集…...

Qt 5.14.2 学习记录 —— 십구 事件

文章目录 1、事件的概念2、处理事件3、鼠标事件1、鼠标单击和双击2、鼠标移动3、鼠标滚轮滚动 4、键盘事件5、定时器事件6、窗口移动和大小改变事件 1、事件的概念 用户进行操作时会产生事件&#xff0c;事件可以关联处理函数。Qt封装了操作系统的事件机制&#xff0c;然后进一…...

国产编辑器EverEdit - 命令窗口应用详解

1 命令窗口应用详解 1.1 应用场景 有时需要在EverEdit中执行一些命令行工具&#xff0c;甚至想把当前文档做为参数&#xff0c;传递给命令进行一些文本分析&#xff0c;比如&#xff1a;一些常用的文本处理工具&#xff0c;gawk.exe等。 1.2 使用方法 命令窗口的使用在官方手…...

iOS开发设计模式篇第二篇MVVM设计模式

目录 一、什么是MVVM 二、MVVM 的主要特点 三、MVVM 的架构图 四、MVVM 与其他模式的对比 五、如何在iOS中实现MVVM 1.Model 2.ViewModel 3.View (ViewController) 4.双向绑定 5.文中完整的代码地址 六、MVVM 的优缺点 1.优点 2.缺点 七、MVVM 的应用场景 八、结…...

【深度学习】3.损失函数的作用

损失函数的作用 假设把猫这张图片分成四个像素点&#xff0c;分别为&#xff1a;56、231、24、2&#xff08;实际应该是三维的&#xff0c;因为还有颜色通道的维度&#xff0c;这里简化成二维&#xff09;。 像素点拿到以后&#xff0c;进行三分类&#xff0c;粉红色为第一组W…...

深入MapReduce——计算模型设计

引入 通过引入篇&#xff0c;我们可以总结&#xff0c;MapReduce针对海量数据计算核心痛点的解法如下&#xff1a; 统一编程模型&#xff0c;降低用户使用门槛分而治之&#xff0c;利用了并行处理提高计算效率移动计算&#xff0c;减少硬件瓶颈的限制 优秀的设计&#xff0c…...

小黑日常积累:学习了CROSS APPLY字段,将sqlserver中字段通过分隔符拆分并统计

问题 字段中的元素是通过分隔符进行拼接的&#xff0c;我需要统计元素的个数&#xff0c;例如: 代码 样例表创建 -- 创建样例表 create table #Tmp_Table (ID int IDENTITY (1,1) not null,Strs nvarchar(50),primary key (ID) ); insert into #Tmp_Table (Strs) VALUES…...

WebSocket知识点笔记(一)

WebSocket ​ WebSocket是一种在单个TCP连接上进行全双工通信的协议。它使得客户端和服务端之间的消息传递更加高效&#xff0c;允许服务器主动向客户端推送数据。 一.WebSocket全双工通信 WebSocket提供了真正的双向通信&#xff0c;客户端和服务端可以同时发送和接收消息 …...

安宝特方案 | AR在供应链管理中的应用:提升效率与透明度

随着全球化的不断深入和市场需求的快速变化&#xff0c;企业对供应链管理的要求也日益提高。如何在复杂的供应链环境中提升效率、降低成本&#xff0c;并确保信息的透明度&#xff0c;成为了各大行业亟待解决的问题。而增强现实&#xff08;AR&#xff09;技术&#xff0c;特别…...

基于Springboot + vue实现的美发门店管理系统

💖学习知识需费心, 📕整理归纳更费神。 🎉源码免费人人喜, 🔥码农福利等你领! 💖常来我家多看看, 📕网址:扣棣编程, 🎉感谢支持常陪伴, 🔥点赞关注别忘记! 💖山高路远坑又深, 📕大军纵横任驰奔, 🎉谁敢横刀立马行? 🔥唯有点赞+关注成! �…...

springboot中配置logback-spring.xml

一、在src/main/resources目录下&#xff0c;也就是在classpath路径下创建logback-spring.xml 注&#xff1a;springboot框架自动配置&#xff0c;如果更换名称&#xff0c;可在配置文件指定该文件即可 <?xml version"1.0" encoding"UTF-8"?> <…...

从63 秒到 0.482 秒:深入剖析 MySQL 分页查询优化

在日常开发中&#xff0c;数据库查询性能问题就像潜伏的“地雷”&#xff0c;总在高并发或数据量庞大的场景下引爆。尤其是当你运行一条简单的分页查询时&#xff0c;结果却让用户苦苦等待&#xff0c;甚至拖垮了系统。这种情况你是否遇到过&#xff1f; 你可能会想&#xff1…...

细说机器学习算法之过拟合与欠拟合

系列文章目录 第一章&#xff1a;Pyhton机器学习算法之KNN 第二章&#xff1a;Pyhton机器学习算法之K—Means 第三章&#xff1a;Pyhton机器学习算法之随机森林 第四章&#xff1a;Pyhton机器学习算法之线性回归 第五章&#xff1a;Pyhton机器学习算法之有监督学习与无监督…...

C/C++ 虚函数

虚函数的定义 虚函数是指在基类内部声明的成员函数前面添加关键字 virtual 指明的函数虚函数存在的意义是为了实现多态&#xff0c;让派生类能够重写(override)其基类的成员函数派生类重写基类的虚函数时&#xff0c;可以添加 virtual 关键字&#xff0c;但不是必须这么做虚函…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...