基于ollama,langchain,springboot从零搭建知识库三【解析文档并存储到向量数据库】
安装环境
安装pgvector,先设置docker镜像源:
vim /etc/docker/daemon.json
{"registry-mirrors": ["https://05f073ad3c0010ea0f4bc00b7105ec20.mirror.swr.myhuaweicloud.com","https://mirror.ccs.tencentyun.com","https://0dj0t5fb.mirror.aliyuncs.com","https://docker.mirrors.ustc.edu.cn","https://6kx4zyno.mirror.aliyuncs.com","https://registry.docker-cn.com","https://akchsmlh.mirror.aliyuncs.com","https://registry.docker-cn.com","https://docker.mirrors.ustc.edu.cn", "https://hub-mirror.c.163.com","https://mirror.baidubce.com"]
}
编写docker-compose.yml:
services:pgvector:image: ankane/pgvector:latestcontainer_name: pgvectorports:- "5432:5432"restart: alwaysenvironment:- POSTGRES_DB=langchat- POSTGRES_USER=root- POSTGRES_PASSWORD=rootvolumes:- ./pgdata:/var/lib/postgresql/datanetworks:- app_networkpgadmin:image: dpage/pgadmin4:latestcontainer_name: pgadminports:- "5050:80"environment:PGADMIN_DEFAULT_EMAIL: "admin@example.com"PGADMIN_DEFAULT_PASSWORD: "admin"volumes:- pgadmin-data:/var/lib/pgadminnetworks:- app_networknetworks:app_network:driver: bridgevolumes:pgadmin-data:pgdata:
执行docker compose up -d(老版本的docker是docker-compose up -d)。如下则安装成功:

访问http://128.0.0.1:5050/ 登录pgadmin,账号密码在docker-compose中

登陆完新增一个server

ollama中安装embedding,在ollama官网中搜索nomic-embed-text ,这里的embedding.length表示向量长度,需要记住

存储向量数据
首先在pom中添加对应依赖
<dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j</artifactId><version>${langchain4j.version}</version></dependency><dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-core</artifactId><version>${langchain4j.version}</version></dependency><dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-pgvector</artifactId><version>${langchain4j.version}</version></dependency><dependency><groupId>ch.qos.logback</groupId><artifactId>logback-classic</artifactId><version>1.5.8</version></dependency><dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-embedding-store-filter-parser-sql</artifactId><version>${langchain4j.version}</version><exclusions><exclusion><groupId>com.github.jsqlparser</groupId><artifactId>jsqlparser</artifactId></exclusion></exclusions></dependency><dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-document-parser-apache-tika</artifactId><version>${langchain4j.version}</version></dependency><dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-pgvector</artifactId><version>${langchain4j.version}</version></dependency>
编写代码:新增EmbeddingController,首先构建一个EmbbedingStore
private EmbeddingStore buildEmbeddingStore() {PgVectorEmbeddingStore store = PgVectorEmbeddingStore.builder().host("127.0.0.1").port(5432).database("langchat").dimension(768) //需要跟llm embedding模型的向量长度统一.user("root").password("root").table("testEmb") //可以自定义新增,无需提前创建.indexListSize(1).useIndex(true).createTable(true).dropTableFirst(false).build();return store;}
随后构建一个EmbeddingModel,用于将文档解析成向量数据
public EmbeddingModel buildEmbedding() {return OllamaEmbeddingModel.builder().baseUrl("http://127.0.0.1:11434").modelName("nomic-embed-text").logRequests(true).logResponses(true).build();}
随后准备一份简单的文本内容存放于E盘中(自己喜欢):
Redis是一个基于内存的key-value结构数据库。Redis 是互联网技术领域使用最为广泛的存储中间件。
Redis服务默认端口号为 6379 ,通过快捷键Ctrl + C 即可停止Redis服务
重启Redis后,再次连接Redis时,需加上密码,否则连接失败。
Redis存储的是key-value结构的数据,其中key是字符串类型,value有5种常用的数据类型:
在MySQL中,可以使用create database语句来创建数据库。以下是创建一个名为my_database的数据库的示例:
新增embed方法,用于解析文档并存储到pgvector中
@GetMapping(value="/embed")public String embed() {Document document;document = FileSystemDocumentLoader.loadDocument("E:\\新建文本文档.txt", new ApacheTikaDocumentParser());document.metadata().put("fileName", "c.md");DocumentSplitter splitter = new DocumentByLineSplitter(100,0);List<TextSegment> segments = splitter.split(document);EmbeddingModel embeddingModel = buildEmbedding();EmbeddingStore<TextSegment> embeddingStore = buildEmbeddingStore();List<Embedding> embeddings = embeddingModel.embedAll(segments).content();List<String> ids = embeddingStore.addAll(embeddings, segments);// 正则表达式匹配换行符return JSONUtil.toJsonStr(ids);}
其中FileSystemDocumentLoader表示系统文件读取器,可以读取本地文件并转化为document。同时还有UrlDocumentLoader用于读取网络上的文档内容
DocumentSplitter作为文档切割器,可以将文档切割成小份的TextSegment。DocumentSplitter有多种实现,可根据自己需求选择:

其中常用的有DocumentByLineSplitter,用于根据行切割(需要注意的点是他需要定义maxSegmentSizeInChars,当他设置为1000,文档每行大小为300时,会将每三行合并成一个segment,会根据分隔符最大程度的填充)
DocumentByParagraphSplitter表示根据段落切割
DocumentByRegexSplitter表示根据正则表达式切割
具体可以点到方法中查看

metadata则表示元数据,可以存储如用户名,文档名之类的检索信息,在后续检索中可以作为条件进行查询
至此文档已成功解析并存储到向量数据库中
查询向量数据
@GetMapping(value="/search")public String search() {EmbeddingModel embeddingModel = buildEmbedding();EmbeddingStore<TextSegment> embeddingStore = buildEmbeddingStore();Embedding queryEmbedding = embeddingModel.embed("MySQL创建语句").content();Filter filter = metadataKey("fileName").isEqualTo("c.md");EmbeddingSearchResult<TextSegment> list = embeddingStore.search(EmbeddingSearchRequest.builder().queryEmbedding(queryEmbedding).maxResults(5).filter(filter).build());List<Map<String, Object>> result = new ArrayList<>();list.matches().forEach(i -> {TextSegment embedded = i.embedded();Map<String, Object> map = embedded.metadata().toMap();map.put("text", embedded.text());result.add(map);});String promot = """查询MySQL创建语句,以下是文本内容,请根据内容提取问题的结果:""" + JSONUtil.toJsonStr(result);ChatLanguageModel model = buildModel();return model.generate(promot);}private ChatLanguageModel buildModel(){return OllamaChatModel.builder().baseUrl("http://127.0.0.1:11434").modelName("qwen2:7b").temperature(0.1).build();}
其中Embedding填充的是需要通过向量数据查询的内容
Filter表示需要过滤的元数据内容。它是一个链式结构,可以通过or,and等关联条件进行搜索
search方法中maxResult表示返回最高匹配的文档数(可能查询的内容不存在于向量中,但是根据向量查询算法查询他有一定相似度也会查询出来)
promot表示将pgvector中搜索出来的内容,根据描述将问题跟结果拼接丢给大模型去整合并返回最终的结果(这里的提示词很粗糙,可以根据自己的需求不断完善提示词)
最终输出结果如下:

至此,一个简单的rag增强搜索就完成了。其中有很多需要微调的地方,还有很多需要整合的地方需要后续再一步步优化迭代
相关文章:
基于ollama,langchain,springboot从零搭建知识库三【解析文档并存储到向量数据库】
安装环境 安装pgvector,先设置docker镜像源: vim /etc/docker/daemon.json {"registry-mirrors": ["https://05f073ad3c0010ea0f4bc00b7105ec20.mirror.swr.myhuaweicloud.com","https://mirror.ccs.tencentyun.com",&…...
Elasticsearch 和arkime 安装
安装一定要注意版本号,不然使用不了 这里Ubuntu使用ubuntu-20.04.6-desktop-amd64.iso elasticsearch这里使用Elasticsearch 7.17.5 | Elastic arkime这里使用wget https://s3.amazonaws.com/files.molo.ch/builds/ubuntu-20.04/arkime_3.4.2-1_amd64.deb 大家想…...
git回退
git回退 1、未使用 git add 缓存代码时 git checkout –- filepathname 放弃单个文件的修改 git checkout . 放弃所有的文件修改 此命令用来放弃掉所有还没有加入到缓存区(就是 git add 命令)的修改:内容修改与整个文件删除。但是此命令不…...
pytest+playwright落地实战大纲
前言 很久没有更新博客,是因为在梳理制作Playwright测试框架实战相关的课程内容。现在课程已经完结,开个帖子介绍下这门课程(硬广, o(〃^▽^〃)o) 课程放在CSDN学习频道, 欢迎关注~ PyTestPl…...
01-硬件入门学习/嵌入式教程-CH340C使用教程
前言 CH340C广泛应用于DIY项目和嵌入式开发中,用于USB数据转换和串口通信。本文将详细介绍CH340C的基本功能、引脚接线及使用方法。 CH340C简介 CH340C是一款USB转TTL电平转换器,可以将电脑的USB数据转换成串口数据,方便与单片机ÿ…...
小试牛刀调整Prompt,优化Token消耗
在上一篇文章 荒腔走板Mac电脑本地部署 LLM 中介绍过本地部署大模型之后,可以通过定制 prompt 来实现 domain 提取等各种各样的需求。 但是实际上,部署本地大模型 这种方式对于个人开发者来说实在是不太友好。一方面需要投入大量资金确保设备的算力足够支…...
snippets router pinia axios mock
文章目录 补充VS Code 代码片段注册自定义组件vue routerpinia删除vite创建项目时默认的文件axiosmock3.0.x版本的 viteMockServe 补充 为文章做补充:https://blog.csdn.net/yavlgloss/article/details/140063387 VS Code 代码片段 为当前项目创建 Snippets {&quo…...
Visual Studio2019调试DLL
1、编写好DLL代码之后,对DLL项目的属性进行设置,选择待注入的DLL,如下图所示 2、生成DLL文件 3、将DLL设置为启动项目之后,按F5启动调试。弹出选择注入的exe的界面之后,使用代码注入器注入步骤2中生成的dll࿰…...
深入解析:Docker 容器如何实现文件系统与资源的多维隔离?
目录 一、RootFs1. Docker 镜像与文件系统层2. RootFs 与容器隔离的意义 二、Linux Namespace1. 进程命名空间1.1 lsns 命令说明1.2 查看“祖先进程”命名空间1.3 查看当前用户进程命名空间 2. 容器进程命名空间2.1 查看容器进程命名空间列表2.2 容器进程命名空间的具体体现 三…...
vue项目中打包后的地址加载不出图片【五种解决方案】
在 Vue 项目中打包后,加载图片路径可能会出现问题,主要是因为打包后的路径与开发时的路径不同。为了确保图片可以正确加载,你可以考虑以下几种方法: 1. 使用 require 或 import 动态加载图片 如果你在 Vue 的模板或者脚本中引用…...
讯飞星火大模型将超越chatgpt?
讯飞星火大模型真的能超越ChatGPT吗? 在人工智能的世界里,新技术层出不穷,而科大讯飞最近发布的讯飞星火大模型3.0引发了不少讨论。有些人甚至大胆猜测:这个模型是否能够在某些方面超越如今广受欢迎的ChatGPT?今天,我们就来深入探讨一下这个话题,分析讯飞星火大模型3.0…...
3D Vision--计算点到平面的距离
写在前面 本文内容 计算点到平面的距离 平台/环境 python open3d 转载请注明出处: https://blog.csdn.net/qq_41102371/article/details/121482246 目录 写在前面准备Open3D代码完 准备Open3D pip install open3d代码 import open3d as o3ddef compute_points2…...
《开源与合作:驱动鸿蒙Next系统中人工智能技术创新发展的双引擎》
在当今科技飞速发展的时代,鸿蒙Next系统作为一款具有创新性和前瞻性的操作系统,为人工智能技术的发展提供了广阔的舞台。而开源和合作则是推动鸿蒙Next系统中人工智能技术创新和发展的两大关键引擎。 开源:创新的源泉 代码共享与知识传播&am…...
Java 高级工程师面试高频题:JVM+Redis+ 并发 + 算法 + 框架
前言 在过 2 个月即将进入 3 月了,然而面对今年的大环境而言,跳槽成功的难度比往年高了很多,很明显的感受就是:对于今年的 java 开发朋友跳槽面试,无论一面还是二面,都开始考验一个 Java 程序员的技术功底…...
【机器学习】嘿马机器学习(科学计算库)第11篇:Pandas,学习目标【附代码文档】
本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原…...
WordPress Fancy Product Designer插件Sql注入漏洞复现(CVE-2024-51818)(附脚本)
免责申明: 本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。 0x0…...
StarRocks强大的实时数据分析
代码仓库:https://github.com/StarRocks/starrocks?tabreadme-ov-file StarRocks | A High-Performance Analytical Database 快速开始:StarRocks | StarRocks StarRocks 是一款高性能分析型数据仓库,使用向量化、MPP 架构、CBO、智能物化…...
Linux(Centos 7.6)命令详解:iconv
1.命令作用 将给定文件的编码从一种编码转换为另一种编码(Convert encoding of given files from one encoding to another) 2.命令语法 Usage: iconv [OPTION...] [FILE...] 3.参数详解 OPTION: 输入/输出格式规范: -f, --from-codeNAME,原始文本编码-t, --t…...
SpringBoot读取配置优先级顺序是什么?
Spring Boot外部化配置详解 目录 引言Spring Boot外部化配置概述配置加载优先级配置加载顺序详解实际案例总结 引言 Spring Boot因其“开箱即用”的特性,极大地简化了Java应用的开发和部署过程。它通过外部化配置机制,允许开发者根据不同的环境&#x…...
VScode连接远程Linux服务器环境配置
一、安装vscode 下载链接:Visual Studio Code - Code Editing. Redefined,点击下载安装即可 安装: 双击安装 选择安装位置,一直点击下一步即可 二、环境配置 1.中文汉化包 2.安装remote-ssh,用于远程连接 2.1安装 2…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
