Mongodb 慢查询日志分析 - 1
Mongodb 慢查询日志分析
使用 mloginfo
处理过的日志会在控制台输出, 显示还是比较友好的.
但是如果内容较大, 就不方便查看了, 如果可以导入到 excel 就比较方便筛选/排序. 但是 mloginfo
并没有提供生成到 excel 的功能. 可以通过一个 python 脚本辅助生成:
import pandas as pd
import re# 定义文件路径
mloginfo_output_file = "mloginfo_output.txt" # 假设已经保存了 mloginfo 的输出内容
excel_output_file = "mloginfo_slow_queries.xlsx"# 定义解析逻辑
def parse_mloginfo(file_path):parsed_data = []with open(file_path, "r", encoding="utf-8") as f:for line in f:# 跳过表头或空行if line.startswith("namespace") or not line.strip():continue# 用正则表达式解析每一行match = re.match(r'^(?P<namespace>\S+)\s+(?P<operation>\S+)\s+(?P<pattern>\{.*?\}|None)\s+(?P<count>\d+)\s+(?P<min_ms>\d+)\s+(?P<max_ms>\d+)\s+(?P<percentile_95>\d+\.?\d*)\s+(?P<sum_ms>\d+)\s+(?P<mean_ms>\d+\.?\d*)\s+(?P<allowDiskUse>\S+)',line)if match:parsed_data.append(match.groupdict())return parsed_data# 调用解析逻辑
parsed_data = parse_mloginfo(mloginfo_output_file)# 如果有数据,转换为 DataFrame 并保存为 Excel
if parsed_data:df = pd.DataFrame(parsed_data)# 转换数据类型(如数字列)numeric_columns = ["count", "min_ms", "max_ms", "percentile_95", "sum_ms", "mean_ms"]for col in numeric_columns:df[col] = pd.to_numeric(df[col])# 保存为 Excel 文件df.to_excel(excel_output_file, index=False)print(f"慢查询已成功保存到 {excel_output_file}")
else:print("未找到可解析的慢查询数据。")
以下是一个更加完成的, 可以在命令参数中执行日志文件:
#!/usr/bin/env python
# -*- coding: utf-8 -*-import os
import re
import pandas as pd
import argparse# 设置命令行参数解析
parser = argparse.ArgumentParser(description="解析 mloginfo 输出并保存为 Excel")
parser.add_argument("log_file", type=str, help="mloginfo 输出文件路径")
args = parser.parse_args()# Step 1: 运行 mloginfo 命令,捕获输出
log_file = args.log_fileoutput_file = f"{log_file}.txt"excel_output_file = f"{log_file}.xlsx"os.system(f"mloginfo {log_file} --queries > {output_file}")# 定义解析逻辑
def parse_mloginfo(file_path):parsed_data = []with open(file_path, "r", encoding="utf-8") as f:for line in f:# 跳过表头或空行if line.startswith("namespace") or not line.strip():continue# 用正则表达式解析每一行match = re.match(r'^(?P<namespace>\S+)\s+(?P<operation>\S+)\s+(?P<pattern>\{.*?\}|None)\s+(?P<count>\d+)\s+(?P<min_ms>\d+)\s+(?P<max_ms>\d+)\s+(?P<percentile_95>\d+\.?\d*)\s+(?P<sum_ms>\d+)\s+(?P<mean_ms>\d+\.?\d*)\s+(?P<allowDiskUse>\S+)',line)if match:parsed_data.append(match.groupdict())return parsed_data# 调用解析逻辑
parsed_data = parse_mloginfo(output_file)# 如果有数据,转换为 DataFrame 并保存为 Excel
if parsed_data:df = pd.DataFrame(parsed_data)# 转换数据类型(如数字列)numeric_columns = ["count", "min_ms", "max_ms", "percentile_95", "sum_ms", "mean_ms"]for col in numeric_columns:df[col] = pd.to_numeric(df[col])# 调整列顺序,将 pattern 列移到最后columns = [col for col in df.columns if col != "pattern"] + ["pattern"]df = df[columns]# 保存为 Excel 文件df.to_excel(excel_output_file, index=False)print(f"慢查询已成功保存到 {excel_output_file}")
else:print("未找到可解析的慢查询数据。")
相关文章:
Mongodb 慢查询日志分析 - 1
Mongodb 慢查询日志分析 使用 mloginfo 处理过的日志会在控制台输出, 显示还是比较友好的. 但是如果内容较大, 就不方便查看了, 如果可以导入到 excel 就比较方便筛选/排序. 但是 mloginfo 并没有提供生成到 excel 的功能. 可以通过一个 python 脚本辅助生成: import pandas…...
MySQL面试题2025 每日20道【其四】
1、你们生产环境的 MySQL 中使用了什么事务隔离级别?为什么? 中等 在生产环境中,MySQL数据库的事务隔离级别通常由开发团队或数据库管理员根据应用的需求来设定。MySQL支持四种标准的事务隔离级别: 读未提交(Read Unc…...

微服务学习-Nacos 注册中心实战
1. 注册中心的设计思路 1.1. 微服务为什么会用到注册中心? 服务与服务之间调用需要有服务发现功能;例如订单服务调用库存服务,库存服务如果有多个,订单服务到底调用那个库存服务呢(负载均衡器)࿰…...
k8s服务StatefulSet部署模板
java 服务StatefulSet部署模板 vim templates-test.yamlapiVersion: apps/v1 kind: StatefulSet metadata:labels:app: ${app_labels}name: ${app_name}namespace: ${app_namespace} spec:replicas: ${app_replicas_count}selector:matchLabels:app: ${app_labels}template:la…...

07 区块链安全技术
概述 区块链的安全特性 区块链解决了在不可靠网络上可靠地传输信息的难题,由于不依赖与中心节点的认证和管理,因此防止了中心节点被攻击造成的数据泄露和认证失败的风险。 区块链安全防护的三大特点 共识机制代替中心认证机制数据篡改“一发动全身”…...

Adobe的AI生成3D数字人框架:从自拍到生动的3D化身
一、引言 随着人工智能技术的发展,我们见证了越来越多创新工具的出现,这些工具使得图像处理和视频编辑变得更加智能与高效。Adobe作为全球领先的创意软件公司,最近推出了一项令人瞩目的新技术——一个能够将普通的二维自拍照转换成栩栩如生的三维(3D)数字人的框架。这项技…...
dfs专题四:综合练习
key:画出决策树(就是找个简单例子模拟一下的树状决策图) dfs传参 or 全局变量: int, double等常量/比较小的变量,可以dfs参数传递vector等线性O(N)变量,要用全局变量 回溯&#x…...

【线性代数】列主元法求矩阵的逆
列主元方法是一种用于求解矩阵逆的数值方法,特别适用于在计算机上实现。其基本思想是通过高斯消元法将矩阵转换为上三角矩阵,然后通过回代求解矩阵的逆。以下是列主元方法求解矩阵 A A A 的逆的步骤: [精确算法] 列主元高斯消元法 步骤 1&am…...
大写——蓝桥杯
1.题目描述 给定一个只包含大写字母和小写字母的字符串,请将其中所有的小写字母转换成大写字母后将字符串输出。 输入描述 输入一行包含一个字符串。 输出描述 输出转换成大写后的字符串。 输入输出样例 示例 输入 LanQiao输出 LANQIAO评测用例规模与约定 对…...
HTML `<head>` 元素详解
在 HTML 文档中,<head> 元素是一个非常重要的部分,它包含了文档的元数据(metadata)和其他与文档相关的信息。虽然 <head> 中的内容不会直接显示在网页上,但它对网页的行为、样式和搜索引擎优化(…...

一文速通stack和queue的理解与使用
CSTL之stack和queue 1.stack1.1.stack的基本概念1.2.stack的接口 2.queue2.1.queue的基本概念2.2.queue的接口 3.priority_queue3.1.priority_queue的基本概念3.2.priority_queue的接口3.3.仿函数 4.容器适配器5.deque5.1.deque的简单了解5.2.deque的优缺点 🌟&…...

Antd React Form使用Radio嵌套多个Select和Input的处理
使用Antd React Form使用Radio会遇到嵌套多个Select和Input的处理,需要多层嵌套和处理默认事件和冒泡,具体实现过程直接上代码。 实现效果布局如下图 代码 <Formname"basic"form{form}labelWrap{...formItemLayoutSpan(5, 19)}onFinish{on…...
Vue - toRefs() 和 toRef() 的使用
一、toRefs() 在 Vue 3 中,toRefs()可以将响应式对象的属性转换为可响应的 refs。主要用于在解构响应式对象时,保持属性的响应性。 1. 导入 toRefs 函数 import { toRefs } from vue;2. 将响应式对象的属性转换为 ref const state reactive({count: 0,message:…...

Python3 OS模块中的文件/目录方法说明九
一. 简介 前面文章简单学习了 Python3 中 OS模块中的文件/目录的部分函数。 本文继续来学习 OS 模块中文件、目录的操作方法:os.pipe() 方法、os.popen() 方法。 二. Python3 OS模块中的文件/目录方法 1. os.pipe() 方法 os.pipe() 方法用于创建一个管道, 返回…...

OpenCV文字绘制支持中文显示
OpenCV版本:4.4 IDE:VS2019 功能描述 OpenCV绘制文本的函数putText()不支持中文的显示,网上很多方法推荐的都是使用FreeType来支持,FreeType是什么呢?FreeType的官网上有介绍 FreeType官网 https://www.freetype.or…...

opengrok_windows_多工程环境搭建
目录 多工程的目录 工程代码下载和log配置 工程的索引 工程部署 工程测试 参考列表 多工程的目录 工程代码下载和log配置 工程代码下载 在每个工程的src目录下,下载工程代码,以下载pulseaudio的代码为例。 git clone gitgithub.com…...

基于ollama,langchain,springboot从零搭建知识库三【解析文档并存储到向量数据库】
安装环境 安装pgvector,先设置docker镜像源: vim /etc/docker/daemon.json {"registry-mirrors": ["https://05f073ad3c0010ea0f4bc00b7105ec20.mirror.swr.myhuaweicloud.com","https://mirror.ccs.tencentyun.com",&…...

Elasticsearch 和arkime 安装
安装一定要注意版本号,不然使用不了 这里Ubuntu使用ubuntu-20.04.6-desktop-amd64.iso elasticsearch这里使用Elasticsearch 7.17.5 | Elastic arkime这里使用wget https://s3.amazonaws.com/files.molo.ch/builds/ubuntu-20.04/arkime_3.4.2-1_amd64.deb 大家想…...
git回退
git回退 1、未使用 git add 缓存代码时 git checkout –- filepathname 放弃单个文件的修改 git checkout . 放弃所有的文件修改 此命令用来放弃掉所有还没有加入到缓存区(就是 git add 命令)的修改:内容修改与整个文件删除。但是此命令不…...

pytest+playwright落地实战大纲
前言 很久没有更新博客,是因为在梳理制作Playwright测试框架实战相关的课程内容。现在课程已经完结,开个帖子介绍下这门课程(硬广, o(〃^▽^〃)o) 课程放在CSDN学习频道, 欢迎关注~ PyTestPl…...

IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...