当前位置: 首页 > news >正文

Mongodb 慢查询日志分析 - 1

Mongodb 慢查询日志分析

使用 mloginfo 处理过的日志会在控制台输出, 显示还是比较友好的.

但是如果内容较大, 就不方便查看了, 如果可以导入到 excel 就比较方便筛选/排序. 但是 mloginfo 并没有提供生成到 excel 的功能. 可以通过一个 python 脚本辅助生成:

import pandas as pd
import re# 定义文件路径
mloginfo_output_file = "mloginfo_output.txt"  # 假设已经保存了 mloginfo 的输出内容
excel_output_file = "mloginfo_slow_queries.xlsx"# 定义解析逻辑
def parse_mloginfo(file_path):parsed_data = []with open(file_path, "r", encoding="utf-8") as f:for line in f:# 跳过表头或空行if line.startswith("namespace") or not line.strip():continue# 用正则表达式解析每一行match = re.match(r'^(?P<namespace>\S+)\s+(?P<operation>\S+)\s+(?P<pattern>\{.*?\}|None)\s+(?P<count>\d+)\s+(?P<min_ms>\d+)\s+(?P<max_ms>\d+)\s+(?P<percentile_95>\d+\.?\d*)\s+(?P<sum_ms>\d+)\s+(?P<mean_ms>\d+\.?\d*)\s+(?P<allowDiskUse>\S+)',line)if match:parsed_data.append(match.groupdict())return parsed_data# 调用解析逻辑
parsed_data = parse_mloginfo(mloginfo_output_file)# 如果有数据,转换为 DataFrame 并保存为 Excel
if parsed_data:df = pd.DataFrame(parsed_data)# 转换数据类型(如数字列)numeric_columns = ["count", "min_ms", "max_ms", "percentile_95", "sum_ms", "mean_ms"]for col in numeric_columns:df[col] = pd.to_numeric(df[col])# 保存为 Excel 文件df.to_excel(excel_output_file, index=False)print(f"慢查询已成功保存到 {excel_output_file}")
else:print("未找到可解析的慢查询数据。")

以下是一个更加完成的, 可以在命令参数中执行日志文件:

#!/usr/bin/env python
# -*- coding: utf-8 -*-import os
import re
import pandas as pd
import argparse# 设置命令行参数解析
parser = argparse.ArgumentParser(description="解析 mloginfo 输出并保存为 Excel")
parser.add_argument("log_file", type=str, help="mloginfo 输出文件路径")
args = parser.parse_args()# Step 1: 运行 mloginfo 命令,捕获输出
log_file = args.log_fileoutput_file = f"{log_file}.txt"excel_output_file = f"{log_file}.xlsx"os.system(f"mloginfo {log_file} --queries > {output_file}")# 定义解析逻辑
def parse_mloginfo(file_path):parsed_data = []with open(file_path, "r", encoding="utf-8") as f:for line in f:# 跳过表头或空行if line.startswith("namespace") or not line.strip():continue# 用正则表达式解析每一行match = re.match(r'^(?P<namespace>\S+)\s+(?P<operation>\S+)\s+(?P<pattern>\{.*?\}|None)\s+(?P<count>\d+)\s+(?P<min_ms>\d+)\s+(?P<max_ms>\d+)\s+(?P<percentile_95>\d+\.?\d*)\s+(?P<sum_ms>\d+)\s+(?P<mean_ms>\d+\.?\d*)\s+(?P<allowDiskUse>\S+)',line)if match:parsed_data.append(match.groupdict())return parsed_data# 调用解析逻辑
parsed_data = parse_mloginfo(output_file)# 如果有数据,转换为 DataFrame 并保存为 Excel
if parsed_data:df = pd.DataFrame(parsed_data)# 转换数据类型(如数字列)numeric_columns = ["count", "min_ms", "max_ms", "percentile_95", "sum_ms", "mean_ms"]for col in numeric_columns:df[col] = pd.to_numeric(df[col])# 调整列顺序,将 pattern 列移到最后columns = [col for col in df.columns if col != "pattern"] + ["pattern"]df = df[columns]# 保存为 Excel 文件df.to_excel(excel_output_file, index=False)print(f"慢查询已成功保存到 {excel_output_file}")
else:print("未找到可解析的慢查询数据。")

相关文章:

Mongodb 慢查询日志分析 - 1

Mongodb 慢查询日志分析 使用 mloginfo 处理过的日志会在控制台输出, 显示还是比较友好的. 但是如果内容较大, 就不方便查看了, 如果可以导入到 excel 就比较方便筛选/排序. 但是 mloginfo 并没有提供生成到 excel 的功能. 可以通过一个 python 脚本辅助生成: import pandas…...

MySQL面试题2025 每日20道【其四】

1、你们生产环境的 MySQL 中使用了什么事务隔离级别&#xff1f;为什么&#xff1f; 中等 在生产环境中&#xff0c;MySQL数据库的事务隔离级别通常由开发团队或数据库管理员根据应用的需求来设定。MySQL支持四种标准的事务隔离级别&#xff1a; 读未提交&#xff08;Read Unc…...

微服务学习-Nacos 注册中心实战

1. 注册中心的设计思路 1.1. 微服务为什么会用到注册中心&#xff1f; 服务与服务之间调用需要有服务发现功能&#xff1b;例如订单服务调用库存服务&#xff0c;库存服务如果有多个&#xff0c;订单服务到底调用那个库存服务呢&#xff08;负载均衡器&#xff09;&#xff0…...

k8s服务StatefulSet部署模板

java 服务StatefulSet部署模板 vim templates-test.yamlapiVersion: apps/v1 kind: StatefulSet metadata:labels:app: ${app_labels}name: ${app_name}namespace: ${app_namespace} spec:replicas: ${app_replicas_count}selector:matchLabels:app: ${app_labels}template:la…...

07 区块链安全技术

概述 区块链的安全特性 区块链解决了在不可靠网络上可靠地传输信息的难题&#xff0c;由于不依赖与中心节点的认证和管理&#xff0c;因此防止了中心节点被攻击造成的数据泄露和认证失败的风险。 区块链安全防护的三大特点 共识机制代替中心认证机制数据篡改“一发动全身”…...

Adobe的AI生成3D数字人框架:从自拍到生动的3D化身

一、引言 随着人工智能技术的发展,我们见证了越来越多创新工具的出现,这些工具使得图像处理和视频编辑变得更加智能与高效。Adobe作为全球领先的创意软件公司,最近推出了一项令人瞩目的新技术——一个能够将普通的二维自拍照转换成栩栩如生的三维(3D)数字人的框架。这项技…...

dfs专题四:综合练习

key&#xff1a;画出决策树&#xff08;就是找个简单例子模拟一下的树状决策图&#xff09; dfs传参 or 全局变量&#xff1a; int, double等常量/比较小的变量&#xff0c;可以dfs参数传递vector等线性O&#xff08;N&#xff09;变量&#xff0c;要用全局变量 回溯&#x…...

【线性代数】列主元法求矩阵的逆

列主元方法是一种用于求解矩阵逆的数值方法&#xff0c;特别适用于在计算机上实现。其基本思想是通过高斯消元法将矩阵转换为上三角矩阵&#xff0c;然后通过回代求解矩阵的逆。以下是列主元方法求解矩阵 A A A 的逆的步骤&#xff1a; [精确算法] 列主元高斯消元法 步骤 1&am…...

大写——蓝桥杯

1.题目描述 给定一个只包含大写字母和小写字母的字符串&#xff0c;请将其中所有的小写字母转换成大写字母后将字符串输出。 输入描述 输入一行包含一个字符串。 输出描述 输出转换成大写后的字符串。 输入输出样例 示例 输入 LanQiao输出 LANQIAO评测用例规模与约定 对…...

HTML `<head>` 元素详解

在 HTML 文档中&#xff0c;<head> 元素是一个非常重要的部分&#xff0c;它包含了文档的元数据&#xff08;metadata&#xff09;和其他与文档相关的信息。虽然 <head> 中的内容不会直接显示在网页上&#xff0c;但它对网页的行为、样式和搜索引擎优化&#xff08…...

一文速通stack和queue的理解与使用

CSTL之stack和queue 1.stack1.1.stack的基本概念1.2.stack的接口 2.queue2.1.queue的基本概念2.2.queue的接口 3.priority_queue3.1.priority_queue的基本概念3.2.priority_queue的接口3.3.仿函数 4.容器适配器5.deque5.1.deque的简单了解5.2.deque的优缺点 &#x1f31f;&…...

Antd React Form使用Radio嵌套多个Select和Input的处理

使用Antd React Form使用Radio会遇到嵌套多个Select和Input的处理&#xff0c;需要多层嵌套和处理默认事件和冒泡&#xff0c;具体实现过程直接上代码。 实现效果布局如下图 代码 <Formname"basic"form{form}labelWrap{...formItemLayoutSpan(5, 19)}onFinish{on…...

Vue - toRefs() 和 toRef() 的使用

一、toRefs() 在 Vue 3 中,toRefs()可以将响应式对象的属性转换为可响应的 refs。主要用于在解构响应式对象时&#xff0c;保持属性的响应性。 1. 导入 toRefs 函数 import { toRefs } from vue;2. 将响应式对象的属性转换为 ref const state reactive({count: 0,message:…...

Python3 OS模块中的文件/目录方法说明九

一. 简介 前面文章简单学习了 Python3 中 OS模块中的文件/目录的部分函数。 本文继续来学习 OS 模块中文件、目录的操作方法&#xff1a;os.pipe() 方法、os.popen() 方法。 二. Python3 OS模块中的文件/目录方法 1. os.pipe() 方法 os.pipe() 方法用于创建一个管道, 返回…...

OpenCV文字绘制支持中文显示

OpenCV版本&#xff1a;4.4 IDE&#xff1a;VS2019 功能描述 OpenCV绘制文本的函数putText()不支持中文的显示&#xff0c;网上很多方法推荐的都是使用FreeType来支持&#xff0c;FreeType是什么呢&#xff1f;FreeType的官网上有介绍 FreeType官网 https://www.freetype.or…...

opengrok_windows_多工程环境搭建

目录 多工程的目录 工程代码下载和log配置 工程的索引 工程部署 工程测试 参考列表 多工程的目录 工程代码下载和log配置 工程代码下载 在每个工程的src目录下&#xff0c;下载工程代码&#xff0c;以下载pulseaudio的代码为例。 git clone gitgithub.com…...

基于ollama,langchain,springboot从零搭建知识库三【解析文档并存储到向量数据库】

安装环境 安装pgvector&#xff0c;先设置docker镜像源&#xff1a; vim /etc/docker/daemon.json {"registry-mirrors": ["https://05f073ad3c0010ea0f4bc00b7105ec20.mirror.swr.myhuaweicloud.com","https://mirror.ccs.tencentyun.com",&…...

Elasticsearch 和arkime 安装

安装一定要注意版本号&#xff0c;不然使用不了 这里Ubuntu使用ubuntu-20.04.6-desktop-amd64.iso elasticsearch这里使用Elasticsearch 7.17.5 | Elastic arkime这里使用wget https://s3.amazonaws.com/files.molo.ch/builds/ubuntu-20.04/arkime_3.4.2-1_amd64.deb 大家想…...

git回退

git回退 1、未使用 git add 缓存代码时 git checkout –- filepathname 放弃单个文件的修改 git checkout . 放弃所有的文件修改 此命令用来放弃掉所有还没有加入到缓存区&#xff08;就是 git add 命令&#xff09;的修改&#xff1a;内容修改与整个文件删除。但是此命令不…...

pytest+playwright落地实战大纲

前言 很久没有更新博客&#xff0c;是因为在梳理制作Playwright测试框架实战相关的课程内容。现在课程已经完结&#xff0c;开个帖子介绍下这门课程&#xff08;硬广, o(〃&#xff3e;▽&#xff3e;〃)o&#xff09; 课程放在CSDN学习频道&#xff0c; 欢迎关注~ PyTestPl…...

01-硬件入门学习/嵌入式教程-CH340C使用教程

前言 CH340C广泛应用于DIY项目和嵌入式开发中&#xff0c;用于USB数据转换和串口通信。本文将详细介绍CH340C的基本功能、引脚接线及使用方法。 CH340C简介 CH340C是一款USB转TTL电平转换器&#xff0c;可以将电脑的USB数据转换成串口数据&#xff0c;方便与单片机&#xff…...

小试牛刀调整Prompt,优化Token消耗

在上一篇文章 荒腔走板Mac电脑本地部署 LLM 中介绍过本地部署大模型之后&#xff0c;可以通过定制 prompt 来实现 domain 提取等各种各样的需求。 但是实际上&#xff0c;部署本地大模型 这种方式对于个人开发者来说实在是不太友好。一方面需要投入大量资金确保设备的算力足够支…...

snippets router pinia axios mock

文章目录 补充VS Code 代码片段注册自定义组件vue routerpinia删除vite创建项目时默认的文件axiosmock3.0.x版本的 viteMockServe 补充 为文章做补充&#xff1a;https://blog.csdn.net/yavlgloss/article/details/140063387 VS Code 代码片段 为当前项目创建 Snippets {&quo…...

Visual Studio2019调试DLL

1、编写好DLL代码之后&#xff0c;对DLL项目的属性进行设置&#xff0c;选择待注入的DLL&#xff0c;如下图所示 2、生成DLL文件 3、将DLL设置为启动项目之后&#xff0c;按F5启动调试。弹出选择注入的exe的界面之后&#xff0c;使用代码注入器注入步骤2中生成的dll&#xff0…...

深入解析:Docker 容器如何实现文件系统与资源的多维隔离?

目录 一、RootFs1. Docker 镜像与文件系统层2. RootFs 与容器隔离的意义 二、Linux Namespace1. 进程命名空间1.1 lsns 命令说明1.2 查看“祖先进程”命名空间1.3 查看当前用户进程命名空间 2. 容器进程命名空间2.1 查看容器进程命名空间列表2.2 容器进程命名空间的具体体现 三…...

vue项目中打包后的地址加载不出图片【五种解决方案】

在 Vue 项目中打包后&#xff0c;加载图片路径可能会出现问题&#xff0c;主要是因为打包后的路径与开发时的路径不同。为了确保图片可以正确加载&#xff0c;你可以考虑以下几种方法&#xff1a; 1. 使用 require 或 import 动态加载图片 如果你在 Vue 的模板或者脚本中引用…...

讯飞星火大模型将超越chatgpt?

讯飞星火大模型真的能超越ChatGPT吗? 在人工智能的世界里,新技术层出不穷,而科大讯飞最近发布的讯飞星火大模型3.0引发了不少讨论。有些人甚至大胆猜测:这个模型是否能够在某些方面超越如今广受欢迎的ChatGPT?今天,我们就来深入探讨一下这个话题,分析讯飞星火大模型3.0…...

3D Vision--计算点到平面的距离

写在前面 本文内容 计算点到平面的距离 平台/环境 python open3d 转载请注明出处&#xff1a; https://blog.csdn.net/qq_41102371/article/details/121482246 目录 写在前面准备Open3D代码完 准备Open3D pip install open3d代码 import open3d as o3ddef compute_points2…...

《开源与合作:驱动鸿蒙Next系统中人工智能技术创新发展的双引擎》

在当今科技飞速发展的时代&#xff0c;鸿蒙Next系统作为一款具有创新性和前瞻性的操作系统&#xff0c;为人工智能技术的发展提供了广阔的舞台。而开源和合作则是推动鸿蒙Next系统中人工智能技术创新和发展的两大关键引擎。 开源&#xff1a;创新的源泉 代码共享与知识传播&am…...

Java 高级工程师面试高频题:JVM+Redis+ 并发 + 算法 + 框架

前言 在过 2 个月即将进入 3 月了&#xff0c;然而面对今年的大环境而言&#xff0c;跳槽成功的难度比往年高了很多&#xff0c;很明显的感受就是&#xff1a;对于今年的 java 开发朋友跳槽面试&#xff0c;无论一面还是二面&#xff0c;都开始考验一个 Java 程序员的技术功底…...