Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战
前一篇文章,Tensor 基本操作3 理解 shape, stride, storage, view,is_contiguous 和 reshape 操作 | PyTorch 深度学习实战
本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started
Tensor 基本使用
- 索引 indexing
- 示例代码
- 加减乘除
- 加法和减法
- 乘法和除法
- broadcasting 机制
- 更多运算
- Links
索引 indexing
Tensor 的索引类似于 Python List 的索引和分片。
比如一个 AxBxC 的三个维度的 Tensor a。
a[第0维的分片, 第1维的分片, 第2维的分片]
分片的语法和 Python List 分片语法一致,开始:结束:步进。
更多索引的高级语法介绍。
示例代码
print("*" * 8, " a")a = torch.randn(5,4,3)print(a)print("*" * 8, " b")b = a[1,] # 只要第 0 维的第一个成员print(b)print("*" * 8, " c")c = a[1:] # 第 0 维从第一个成员开始都要,注意:这里索引从 0 开始print(c)print("*" * 8, " d")d = a[1:, 1] # 第 0 维从第一个成员开始都要,第二维只要第一个成员print(d)
Result
******** a
tensor([[[ 0.1874, -0.0980, -0.3815],[-0.8175, 1.5976, -1.4927],[-0.1507, 1.1806, -0.3685],[ 1.1583, 0.9419, -0.5540]],[[ 1.3078, -1.4250, -1.5981],[-0.0756, 2.0776, 0.7708],[ 1.6020, -1.9133, 1.2459],[-0.2817, -0.7238, -0.5413]],[[-0.8057, -0.4368, -1.2398],[ 0.8415, 1.7679, 0.6469],[ 0.7046, -0.4872, 1.1219],[-2.5866, -0.1263, 2.0684]],[[ 1.8756, 1.4231, -1.2082],[ 0.2111, 0.5244, 2.2242],[-0.9658, -1.3731, -0.9126],[-0.3850, -0.7273, -0.0519]],[[ 0.7949, 2.2807, -0.8793],[ 0.4037, 1.2422, -0.2393],[ 0.4786, 0.6107, 1.4225],[ 0.6104, 1.2682, -0.0801]]])
******** b = a[1,]
tensor([[ 1.3078, -1.4250, -1.5981],[-0.0756, 2.0776, 0.7708],[ 1.6020, -1.9133, 1.2459],[-0.2817, -0.7238, -0.5413]])
******** c = a[1:]
tensor([[[ 1.3078, -1.4250, -1.5981],[-0.0756, 2.0776, 0.7708],[ 1.6020, -1.9133, 1.2459],[-0.2817, -0.7238, -0.5413]],[[-0.8057, -0.4368, -1.2398],[ 0.8415, 1.7679, 0.6469],[ 0.7046, -0.4872, 1.1219],[-2.5866, -0.1263, 2.0684]],[[ 1.8756, 1.4231, -1.2082],[ 0.2111, 0.5244, 2.2242],[-0.9658, -1.3731, -0.9126],[-0.3850, -0.7273, -0.0519]],[[ 0.7949, 2.2807, -0.8793],[ 0.4037, 1.2422, -0.2393],[ 0.4786, 0.6107, 1.4225],[ 0.6104, 1.2682, -0.0801]]])
******** d = a[1:, 1]
tensor([[-0.0756, 2.0776, 0.7708],[ 0.8415, 1.7679, 0.6469],[ 0.2111, 0.5244, 2.2242],[ 0.4037, 1.2422, -0.2393]])
加减乘除
加法和减法
import torch# 这两个Tensor加减乘除会对b自动进行Broadcasting
a = torch.rand(3, 4)
b = torch.rand(4)c1 = a + b
c2 = torch.add(a, b)
print(c1.shape, c2.shape)
print(torch.all(torch.eq(c1, c2)))
乘法和除法
*, torch.mul, torch.mm, torch.matmul
参考: torch.Tensor的4种乘法
除法可以用乘法 API 完成。
broadcasting 机制
在 Tensor 的加减运算中,当两个 tensor 不能直接符合数学的运算规则时,PyTorch 会先尝试将 tensor 进行变换,再进行计算,这个变换的规则就是:broadcasting。

更多 broadcasting 机制的介绍。
更多运算
更多加法和其他运算,参考Pytorch Tensor基本数学运算:
- 减法运算
- 哈达玛积(对应元素相乘,也称为 element wise)
- 除法运算
- 幂运算
- 开方运算
- 指数与对数运算
- 近似值运算
- 裁剪运算
Links
- Tensor Broadcasting under the hood
- Mastering PyTorch Indexing: Simple Techniques with Practical Examples
- torch.Tensor的4种乘法
- Pytorch Tensor基本数学运算
相关文章:
Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战
前一篇文章,Tensor 基本操作3 理解 shape, stride, storage, view,is_contiguous 和 reshape 操作 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started Tensor 基本使用 索引 indexing示例代码 加减…...
【Uniapp-Vue3】request各种不同类型的参数详解
一、参数携带 我们调用该接口的时候需要传入type参数。 第一种 路径名称?参数名1参数值1&参数名2参数值2 第二种 uni.request({ url:"请求路径", data:{ 参数名:参数值 } }) 二、请求方式 常用的有get,post和put 三种,默认是get请求。…...
【Prometheus】Prometheus如何监控Haproxy
✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...
SSM开发(一)JAVA,javaEE,spring,springmvc,springboot,SSM,SSH等几个概念区别
目录 JAVA 框架 javaEE spring springmvc springboot SSM SSH maven JAVA 一种面向对象、高级编程语言,Python也是高级编程语言;不是框架(框架:一般用于大型复杂需求项目,用于快速开发)具有三大特性,所谓Jav…...
HTML5 常用事件详解
在现代 Web 开发中,用户交互是提升用户体验的关键。HTML5 提供了丰富的事件机制,允许开发者监听用户的操作(如点击、拖动、键盘输入等),并触发相应的逻辑处理。本文将详细介绍 HTML5 中的常用事件,包括鼠标…...
TCP全连接队列
1. 理解 int listen(int sockfd, int backlog) 第二个参数的作用 backlog:表示tcp全连接队列的连接个数1。 如果连接个数等于backlog1,后续连接就会失败,假设tcp连接个数为0,最大连接个数就为1,并且不accept获取连接…...
统计文本文件中单词频率的 Swift 与 Bash 实现详解
网罗开发 (小红书、快手、视频号同名) 大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等…...
iOS 权限管理:同时请求相机和麦克风权限的最佳实践
引言 在开发视频类应用时,我们常常会遇到需要同时请求相机和麦克风权限的场景。比如,在用户发布视频动态时,相机用于捕捉画面,麦克风用于录制声音;又或者在直播功能中,只有获得这两项权限,用户…...
Excel 实现文本拼接方法
1. 使用 & 运算符 这是最常见和简单的拼接方法。你只需使用 & 来连接多个文本单元格或文本字符串。 示例公式: A1 & B1这个公式会将 A1 和 B1 单元格中的文本合并为一个字符串。 如果你希望在文本之间加入分隔符(如空格、逗号等…...
软考信安27~Windows操作系统安全相关
1、Windows账户与组管理 1.1、用户账户查看 whoami #查看当前登录的用户名称 whoami /all #查看当前系统的用户名和组信息,以及SID whoami /user #查看当前用户的SID net user #查看系统中包含哪些用户 wmic useraccount get name,sid #查看…...
从 Spark 到 StarRocks:实现58同城湖仓一体架构的高效转型
作者:王世发,吴艳兴等,58同城数据架构部 导读: 本文介绍了58同城在其数据探查平台中引入StarRocks的实践,旨在提升实时查询性能。在面对传统Spark和Hive架构的性能瓶颈时,58同城选择StarRocks作为加速引擎&…...
WordPress Hunk Companion插件节点逻辑缺陷导致Rce漏洞复现(CVE-2024-9707)(附脚本)
免责申明: 本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。 0x0…...
使用 HTML 开发 Portal 页全解析
前言 在当今数字化时代,网站作为企业和个人展示信息、提供服务的重要窗口,其重要性不言而喻。而 Portal 页,作为网站的核心页面之一,承担着引导用户、整合信息等关键任务。那么,如何使用 HTML 开发一个功能齐全、界面…...
机器学习(二)
一,Multiple features(多类特征) 多元线性回归: 1,多类特征的符号表示: (可以类比二维数组) 2,多元线性回归模型: 二,Vectorization(向量化) (简化代码&缩短运行速度): 向量化实现多元线性回归模型: 向量化实现多…...
Laravel 实战:用Carbon筛选最近15分钟内的数据
在开发基于时间的特性时,常常需要筛选出在特定时间范围内的记录。例如,在一个设备报告系统中,你可能需要获取最近15分钟内的设备报告。本文将介绍如何在 Laravel 中实现这一功能,包括如何使用 Carbon 和 Eloquent 查询来筛选 crea…...
Ubuntu20.04 文件系统打不开
问题描述: 电脑中安装了相关的工具, 删除了一些东西之后,Linux 电脑操作系统为 Ubuntu20.04突然打不开文件系统了,命令 sudo nautilus 可以正常进入, 显示了很多权限问题。 使用过: killall nautilus 不起作用,后查原因:我无法作为普通用户…...
vue3的组件v-model(defineModel()宏)
这里展示的是vue3.4版本之前的如何在组件上使用以实现双向绑定 <template><p>我是子组件</p><input :value"props.modelValue" input"handelInput"/> </template><script lang"ts" setup>const props def…...
在 Ubuntu 22.04 上安装 Kubernetes(Kubeadm 安装方式)
使用 Kubeadm、Containerd 和 Calico 网络插件搭建 Kubernetes 集群教程 1.安装前准备(所有节点执行) 关闭防火墙 sudo systemctl disable --now ufw设置服务时区 # 设置为亚洲的上海时区 sudo timedatectl set-timezone Asia/Shanghai # 重启时间同…...
2_高并发内存池_各层级的框架设计及ThreadCache(线程缓存)申请内存设计
一、高并发内存池框架设计 高并发池框架设计,特别是针对内存池的设计,需要充分考虑多线程环境下: 性能问题锁竞争问题内存碎片问题 高并发内存池的整体框架设计旨在提高内存的申请和释放效率,减少锁竞争和内存碎片。 高并发内存…...
Java算法——排序
目录 引言1. 插入排序1.1 基本思想1.2 直接插入排序1.3 希尔排序 2. 选择排序2.1 基本思想2.2 直接选择排序2.3 直接选择排序变种2.4 堆排序 3. 交换排序3.1 基本思想3.2 冒泡排序3.3 快速排序3.3.1 快速排序的基本结构3.3.2 Hoare法3.3.3 挖坑法3.3.4 双指针法 3.4 快速排序非…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...
深入理解 React 样式方案
React 的样式方案较多,在应用开发初期,开发者需要根据项目业务具体情况选择对应样式方案。React 样式方案主要有: 1. 内联样式 2. module css 3. css in js 4. tailwind css 这些方案中,均有各自的优势和缺点。 1. 方案优劣势 1. 内联样式: 简单直观,适合动态样式和…...
【Zephyr 系列 16】构建 BLE + LoRa 协同通信系统:网关转发与混合调度实战
🧠关键词:Zephyr、BLE、LoRa、混合通信、事件驱动、网关中继、低功耗调度 📌面向读者:希望将 BLE 和 LoRa 结合应用于资产追踪、环境监测、远程数据采集等场景的开发者 📊篇幅预计:5300+ 字 🧭 背景与需求 在许多 IoT 项目中,单一通信方式往往难以兼顾近场数据采集…...
前端打包工具简单介绍
前端打包工具简单介绍 一、Webpack 架构与插件机制 1. Webpack 架构核心组成 Entry(入口) 指定应用的起点文件,比如 src/index.js。 Module(模块) Webpack 把项目当作模块图,模块可以是 JS、CSS、图片等…...
