当前位置: 首页 > news >正文

Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战

前一篇文章,Tensor 基本操作3 理解 shape, stride, storage, view,is_contiguous 和 reshape 操作 | PyTorch 深度学习实战

本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started

Tensor 基本使用

  • 索引 indexing
    • 示例代码
  • 加减乘除
    • 加法和减法
    • 乘法和除法
  • broadcasting 机制
  • 更多运算
  • Links

索引 indexing

Tensor 的索引类似于 Python List 的索引和分片。

比如一个 AxBxC 的三个维度的 Tensor a

a[第0维的分片, 第1维的分片, 第2维的分片]

分片的语法和 Python List 分片语法一致,开始:结束:步进

更多索引的高级语法介绍。

示例代码

    print("*" * 8, " a")a = torch.randn(5,4,3)print(a)print("*" * 8, " b")b = a[1,]     # 只要第 0 维的第一个成员print(b)print("*" * 8, " c")c = a[1:]   # 第 0 维从第一个成员开始都要,注意:这里索引从 0 开始print(c)print("*" * 8, " d")d = a[1:, 1] # 第 0 维从第一个成员开始都要,第二维只要第一个成员print(d)

Result

********  a
tensor([[[ 0.1874, -0.0980, -0.3815],[-0.8175,  1.5976, -1.4927],[-0.1507,  1.1806, -0.3685],[ 1.1583,  0.9419, -0.5540]],[[ 1.3078, -1.4250, -1.5981],[-0.0756,  2.0776,  0.7708],[ 1.6020, -1.9133,  1.2459],[-0.2817, -0.7238, -0.5413]],[[-0.8057, -0.4368, -1.2398],[ 0.8415,  1.7679,  0.6469],[ 0.7046, -0.4872,  1.1219],[-2.5866, -0.1263,  2.0684]],[[ 1.8756,  1.4231, -1.2082],[ 0.2111,  0.5244,  2.2242],[-0.9658, -1.3731, -0.9126],[-0.3850, -0.7273, -0.0519]],[[ 0.7949,  2.2807, -0.8793],[ 0.4037,  1.2422, -0.2393],[ 0.4786,  0.6107,  1.4225],[ 0.6104,  1.2682, -0.0801]]])
********  b = a[1,]
tensor([[ 1.3078, -1.4250, -1.5981],[-0.0756,  2.0776,  0.7708],[ 1.6020, -1.9133,  1.2459],[-0.2817, -0.7238, -0.5413]])
********  c = a[1:]
tensor([[[ 1.3078, -1.4250, -1.5981],[-0.0756,  2.0776,  0.7708],[ 1.6020, -1.9133,  1.2459],[-0.2817, -0.7238, -0.5413]],[[-0.8057, -0.4368, -1.2398],[ 0.8415,  1.7679,  0.6469],[ 0.7046, -0.4872,  1.1219],[-2.5866, -0.1263,  2.0684]],[[ 1.8756,  1.4231, -1.2082],[ 0.2111,  0.5244,  2.2242],[-0.9658, -1.3731, -0.9126],[-0.3850, -0.7273, -0.0519]],[[ 0.7949,  2.2807, -0.8793],[ 0.4037,  1.2422, -0.2393],[ 0.4786,  0.6107,  1.4225],[ 0.6104,  1.2682, -0.0801]]])
********  d = a[1:, 1]
tensor([[-0.0756,  2.0776,  0.7708],[ 0.8415,  1.7679,  0.6469],[ 0.2111,  0.5244,  2.2242],[ 0.4037,  1.2422, -0.2393]])

加减乘除

加法和减法

import torch# 这两个Tensor加减乘除会对b自动进行Broadcasting
a = torch.rand(3, 4)
b = torch.rand(4)c1 = a + b
c2 = torch.add(a, b)
print(c1.shape, c2.shape)
print(torch.all(torch.eq(c1, c2)))

乘法和除法

*, torch.mul, torch.mm, torch.matmul

参考: torch.Tensor的4种乘法

除法可以用乘法 API 完成。

broadcasting 机制

在 Tensor 的加减运算中,当两个 tensor 不能直接符合数学的运算规则时,PyTorch 会先尝试将 tensor 进行变换,再进行计算,这个变换的规则就是:broadcasting。
在这里插入图片描述

更多 broadcasting 机制的介绍。

更多运算

更多加法和其他运算,参考Pytorch Tensor基本数学运算:

  • 减法运算
  • 哈达玛积(对应元素相乘,也称为 element wise)
  • 除法运算
  • 幂运算
  • 开方运算
  • 指数与对数运算
  • 近似值运算
  • 裁剪运算

Links

  • Tensor Broadcasting under the hood
  • Mastering PyTorch Indexing: Simple Techniques with Practical Examples
  • torch.Tensor的4种乘法
  • Pytorch Tensor基本数学运算

相关文章:

Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战

前一篇文章,Tensor 基本操作3 理解 shape, stride, storage, view,is_contiguous 和 reshape 操作 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started Tensor 基本使用 索引 indexing示例代码 加减…...

【Uniapp-Vue3】request各种不同类型的参数详解

一、参数携带 我们调用该接口的时候需要传入type参数。 第一种 路径名称?参数名1参数值1&参数名2参数值2 第二种 uni.request({ url:"请求路径", data:{ 参数名:参数值 } }) 二、请求方式 常用的有get,post和put 三种,默认是get请求。…...

【Prometheus】Prometheus如何监控Haproxy

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...

SSM开发(一)JAVA,javaEE,spring,springmvc,springboot,SSM,SSH等几个概念区别

目录 JAVA 框架 javaEE spring springmvc springboot SSM SSH maven JAVA 一种面向对象、高级编程语言,Python也是高级编程语言;不是框架(框架:一般用于大型复杂需求项目,用于快速开发)具有三大特性,所谓Jav…...

HTML5 常用事件详解

在现代 Web 开发中,用户交互是提升用户体验的关键。HTML5 提供了丰富的事件机制,允许开发者监听用户的操作(如点击、拖动、键盘输入等),并触发相应的逻辑处理。本文将详细介绍 HTML5 中的常用事件,包括鼠标…...

TCP全连接队列

1. 理解 int listen(int sockfd, int backlog) 第二个参数的作用 backlog:表示tcp全连接队列的连接个数1。 如果连接个数等于backlog1,后续连接就会失败,假设tcp连接个数为0,最大连接个数就为1,并且不accept获取连接…...

统计文本文件中单词频率的 Swift 与 Bash 实现详解

网罗开发 (小红书、快手、视频号同名) 大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等…...

iOS 权限管理:同时请求相机和麦克风权限的最佳实践

引言 在开发视频类应用时,我们常常会遇到需要同时请求相机和麦克风权限的场景。比如,在用户发布视频动态时,相机用于捕捉画面,麦克风用于录制声音;又或者在直播功能中,只有获得这两项权限,用户…...

Excel 实现文本拼接方法

1. 使用 & 运算符 这是最常见和简单的拼接方法。你只需使用 & 来连接多个文本单元格或文本字符串。 示例公式: A1 & B1这个公式会将 A1 和 B1 单元格中的文本合并为一个字符串。 如果你希望在文本之间加入分隔符(如空格、逗号等&#xf…...

软考信安27~Windows操作系统安全相关

1、Windows账户与组管理 1.1、用户账户查看 whoami #查看当前登录的用户名称 whoami /all #查看当前系统的用户名和组信息,以及SID whoami /user #查看当前用户的SID net user #查看系统中包含哪些用户 wmic useraccount get name,sid #查看…...

从 Spark 到 StarRocks:实现58同城湖仓一体架构的高效转型

作者:王世发,吴艳兴等,58同城数据架构部 导读: 本文介绍了58同城在其数据探查平台中引入StarRocks的实践,旨在提升实时查询性能。在面对传统Spark和Hive架构的性能瓶颈时,58同城选择StarRocks作为加速引擎&…...

WordPress Hunk Companion插件节点逻辑缺陷导致Rce漏洞复现(CVE-2024-9707)(附脚本)

免责申明: 本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。 0x0…...

使用 HTML 开发 Portal 页全解析

前言 在当今数字化时代,网站作为企业和个人展示信息、提供服务的重要窗口,其重要性不言而喻。而 Portal 页,作为网站的核心页面之一,承担着引导用户、整合信息等关键任务。那么,如何使用 HTML 开发一个功能齐全、界面…...

机器学习(二)

一,Multiple features(多类特征) 多元线性回归: 1,多类特征的符号表示: (可以类比二维数组) 2,多元线性回归模型: 二,Vectorization(向量化) (简化代码&缩短运行速度): 向量化实现多元线性回归模型: 向量化实现多…...

Laravel 实战:用Carbon筛选最近15分钟内的数据

在开发基于时间的特性时,常常需要筛选出在特定时间范围内的记录。例如,在一个设备报告系统中,你可能需要获取最近15分钟内的设备报告。本文将介绍如何在 Laravel 中实现这一功能,包括如何使用 Carbon 和 Eloquent 查询来筛选 crea…...

Ubuntu20.04 文件系统打不开

问题描述: 电脑中安装了相关的工具, 删除了一些东西之后,Linux 电脑操作系统为 Ubuntu20.04突然打不开文件系统了,命令 sudo nautilus 可以正常进入, 显示了很多权限问题。 使用过: killall nautilus 不起作用,后查原因:我无法作为普通用户…...

vue3的组件v-model(defineModel()宏)

这里展示的是vue3.4版本之前的如何在组件上使用以实现双向绑定 <template><p>我是子组件</p><input :value"props.modelValue" input"handelInput"/> </template><script lang"ts" setup>const props def…...

在 Ubuntu 22.04 上安装 Kubernetes(Kubeadm 安装方式)

使用 Kubeadm、Containerd 和 Calico 网络插件搭建 Kubernetes 集群教程 1.安装前准备&#xff08;所有节点执行&#xff09; 关闭防火墙 sudo systemctl disable --now ufw设置服务时区 # 设置为亚洲的上海时区 sudo timedatectl set-timezone Asia/Shanghai # 重启时间同…...

2_高并发内存池_各层级的框架设计及ThreadCache(线程缓存)申请内存设计

一、高并发内存池框架设计 高并发池框架设计&#xff0c;特别是针对内存池的设计&#xff0c;需要充分考虑多线程环境下&#xff1a; 性能问题锁竞争问题内存碎片问题 高并发内存池的整体框架设计旨在提高内存的申请和释放效率&#xff0c;减少锁竞争和内存碎片。 高并发内存…...

Java算法——排序

目录 引言1. 插入排序1.1 基本思想1.2 直接插入排序1.3 希尔排序 2. 选择排序2.1 基本思想2.2 直接选择排序2.3 直接选择排序变种2.4 堆排序 3. 交换排序3.1 基本思想3.2 冒泡排序3.3 快速排序3.3.1 快速排序的基本结构3.3.2 Hoare法3.3.3 挖坑法3.3.4 双指针法 3.4 快速排序非…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...