Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战
前一篇文章,Tensor 基本操作3 理解 shape, stride, storage, view,is_contiguous 和 reshape 操作 | PyTorch 深度学习实战
本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started
Tensor 基本使用
- 索引 indexing
- 示例代码
- 加减乘除
- 加法和减法
- 乘法和除法
- broadcasting 机制
- 更多运算
- Links
索引 indexing
Tensor
的索引类似于 Python List 的索引和分片。
比如一个 AxBxC 的三个维度的 Tensor a
。
a[第0维的分片
, 第1维的分片
, 第2维的分片
]
分片的语法和 Python List 分片语法一致,开始:结束:步进
。
更多索引的高级语法介绍。
示例代码
print("*" * 8, " a")a = torch.randn(5,4,3)print(a)print("*" * 8, " b")b = a[1,] # 只要第 0 维的第一个成员print(b)print("*" * 8, " c")c = a[1:] # 第 0 维从第一个成员开始都要,注意:这里索引从 0 开始print(c)print("*" * 8, " d")d = a[1:, 1] # 第 0 维从第一个成员开始都要,第二维只要第一个成员print(d)
Result
******** a
tensor([[[ 0.1874, -0.0980, -0.3815],[-0.8175, 1.5976, -1.4927],[-0.1507, 1.1806, -0.3685],[ 1.1583, 0.9419, -0.5540]],[[ 1.3078, -1.4250, -1.5981],[-0.0756, 2.0776, 0.7708],[ 1.6020, -1.9133, 1.2459],[-0.2817, -0.7238, -0.5413]],[[-0.8057, -0.4368, -1.2398],[ 0.8415, 1.7679, 0.6469],[ 0.7046, -0.4872, 1.1219],[-2.5866, -0.1263, 2.0684]],[[ 1.8756, 1.4231, -1.2082],[ 0.2111, 0.5244, 2.2242],[-0.9658, -1.3731, -0.9126],[-0.3850, -0.7273, -0.0519]],[[ 0.7949, 2.2807, -0.8793],[ 0.4037, 1.2422, -0.2393],[ 0.4786, 0.6107, 1.4225],[ 0.6104, 1.2682, -0.0801]]])
******** b = a[1,]
tensor([[ 1.3078, -1.4250, -1.5981],[-0.0756, 2.0776, 0.7708],[ 1.6020, -1.9133, 1.2459],[-0.2817, -0.7238, -0.5413]])
******** c = a[1:]
tensor([[[ 1.3078, -1.4250, -1.5981],[-0.0756, 2.0776, 0.7708],[ 1.6020, -1.9133, 1.2459],[-0.2817, -0.7238, -0.5413]],[[-0.8057, -0.4368, -1.2398],[ 0.8415, 1.7679, 0.6469],[ 0.7046, -0.4872, 1.1219],[-2.5866, -0.1263, 2.0684]],[[ 1.8756, 1.4231, -1.2082],[ 0.2111, 0.5244, 2.2242],[-0.9658, -1.3731, -0.9126],[-0.3850, -0.7273, -0.0519]],[[ 0.7949, 2.2807, -0.8793],[ 0.4037, 1.2422, -0.2393],[ 0.4786, 0.6107, 1.4225],[ 0.6104, 1.2682, -0.0801]]])
******** d = a[1:, 1]
tensor([[-0.0756, 2.0776, 0.7708],[ 0.8415, 1.7679, 0.6469],[ 0.2111, 0.5244, 2.2242],[ 0.4037, 1.2422, -0.2393]])
加减乘除
加法和减法
import torch# 这两个Tensor加减乘除会对b自动进行Broadcasting
a = torch.rand(3, 4)
b = torch.rand(4)c1 = a + b
c2 = torch.add(a, b)
print(c1.shape, c2.shape)
print(torch.all(torch.eq(c1, c2)))
乘法和除法
*, torch.mul, torch.mm, torch.matmul
参考: torch.Tensor的4种乘法
除法可以用乘法 API 完成。
broadcasting 机制
在 Tensor 的加减运算中,当两个 tensor 不能直接符合数学的运算规则时,PyTorch 会先尝试将 tensor 进行变换,再进行计算,这个变换的规则就是:broadcasting。
更多 broadcasting 机制的介绍。
更多运算
更多加法和其他运算,参考Pytorch Tensor基本数学运算:
- 减法运算
- 哈达玛积(对应元素相乘,也称为 element wise)
- 除法运算
- 幂运算
- 开方运算
- 指数与对数运算
- 近似值运算
- 裁剪运算
Links
- Tensor Broadcasting under the hood
- Mastering PyTorch Indexing: Simple Techniques with Practical Examples
- torch.Tensor的4种乘法
- Pytorch Tensor基本数学运算
相关文章:

Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战
前一篇文章,Tensor 基本操作3 理解 shape, stride, storage, view,is_contiguous 和 reshape 操作 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started Tensor 基本使用 索引 indexing示例代码 加减…...

【Uniapp-Vue3】request各种不同类型的参数详解
一、参数携带 我们调用该接口的时候需要传入type参数。 第一种 路径名称?参数名1参数值1&参数名2参数值2 第二种 uni.request({ url:"请求路径", data:{ 参数名:参数值 } }) 二、请求方式 常用的有get,post和put 三种,默认是get请求。…...

【Prometheus】Prometheus如何监控Haproxy
✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...

SSM开发(一)JAVA,javaEE,spring,springmvc,springboot,SSM,SSH等几个概念区别
目录 JAVA 框架 javaEE spring springmvc springboot SSM SSH maven JAVA 一种面向对象、高级编程语言,Python也是高级编程语言;不是框架(框架:一般用于大型复杂需求项目,用于快速开发)具有三大特性,所谓Jav…...
HTML5 常用事件详解
在现代 Web 开发中,用户交互是提升用户体验的关键。HTML5 提供了丰富的事件机制,允许开发者监听用户的操作(如点击、拖动、键盘输入等),并触发相应的逻辑处理。本文将详细介绍 HTML5 中的常用事件,包括鼠标…...

TCP全连接队列
1. 理解 int listen(int sockfd, int backlog) 第二个参数的作用 backlog:表示tcp全连接队列的连接个数1。 如果连接个数等于backlog1,后续连接就会失败,假设tcp连接个数为0,最大连接个数就为1,并且不accept获取连接…...

统计文本文件中单词频率的 Swift 与 Bash 实现详解
网罗开发 (小红书、快手、视频号同名) 大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等…...

iOS 权限管理:同时请求相机和麦克风权限的最佳实践
引言 在开发视频类应用时,我们常常会遇到需要同时请求相机和麦克风权限的场景。比如,在用户发布视频动态时,相机用于捕捉画面,麦克风用于录制声音;又或者在直播功能中,只有获得这两项权限,用户…...
Excel 实现文本拼接方法
1. 使用 & 运算符 这是最常见和简单的拼接方法。你只需使用 & 来连接多个文本单元格或文本字符串。 示例公式: A1 & B1这个公式会将 A1 和 B1 单元格中的文本合并为一个字符串。 如果你希望在文本之间加入分隔符(如空格、逗号等…...
软考信安27~Windows操作系统安全相关
1、Windows账户与组管理 1.1、用户账户查看 whoami #查看当前登录的用户名称 whoami /all #查看当前系统的用户名和组信息,以及SID whoami /user #查看当前用户的SID net user #查看系统中包含哪些用户 wmic useraccount get name,sid #查看…...

从 Spark 到 StarRocks:实现58同城湖仓一体架构的高效转型
作者:王世发,吴艳兴等,58同城数据架构部 导读: 本文介绍了58同城在其数据探查平台中引入StarRocks的实践,旨在提升实时查询性能。在面对传统Spark和Hive架构的性能瓶颈时,58同城选择StarRocks作为加速引擎&…...
WordPress Hunk Companion插件节点逻辑缺陷导致Rce漏洞复现(CVE-2024-9707)(附脚本)
免责申明: 本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。 0x0…...

使用 HTML 开发 Portal 页全解析
前言 在当今数字化时代,网站作为企业和个人展示信息、提供服务的重要窗口,其重要性不言而喻。而 Portal 页,作为网站的核心页面之一,承担着引导用户、整合信息等关键任务。那么,如何使用 HTML 开发一个功能齐全、界面…...

机器学习(二)
一,Multiple features(多类特征) 多元线性回归: 1,多类特征的符号表示: (可以类比二维数组) 2,多元线性回归模型: 二,Vectorization(向量化) (简化代码&缩短运行速度): 向量化实现多元线性回归模型: 向量化实现多…...
Laravel 实战:用Carbon筛选最近15分钟内的数据
在开发基于时间的特性时,常常需要筛选出在特定时间范围内的记录。例如,在一个设备报告系统中,你可能需要获取最近15分钟内的设备报告。本文将介绍如何在 Laravel 中实现这一功能,包括如何使用 Carbon 和 Eloquent 查询来筛选 crea…...
Ubuntu20.04 文件系统打不开
问题描述: 电脑中安装了相关的工具, 删除了一些东西之后,Linux 电脑操作系统为 Ubuntu20.04突然打不开文件系统了,命令 sudo nautilus 可以正常进入, 显示了很多权限问题。 使用过: killall nautilus 不起作用,后查原因:我无法作为普通用户…...
vue3的组件v-model(defineModel()宏)
这里展示的是vue3.4版本之前的如何在组件上使用以实现双向绑定 <template><p>我是子组件</p><input :value"props.modelValue" input"handelInput"/> </template><script lang"ts" setup>const props def…...

在 Ubuntu 22.04 上安装 Kubernetes(Kubeadm 安装方式)
使用 Kubeadm、Containerd 和 Calico 网络插件搭建 Kubernetes 集群教程 1.安装前准备(所有节点执行) 关闭防火墙 sudo systemctl disable --now ufw设置服务时区 # 设置为亚洲的上海时区 sudo timedatectl set-timezone Asia/Shanghai # 重启时间同…...

2_高并发内存池_各层级的框架设计及ThreadCache(线程缓存)申请内存设计
一、高并发内存池框架设计 高并发池框架设计,特别是针对内存池的设计,需要充分考虑多线程环境下: 性能问题锁竞争问题内存碎片问题 高并发内存池的整体框架设计旨在提高内存的申请和释放效率,减少锁竞争和内存碎片。 高并发内存…...
Java算法——排序
目录 引言1. 插入排序1.1 基本思想1.2 直接插入排序1.3 希尔排序 2. 选择排序2.1 基本思想2.2 直接选择排序2.3 直接选择排序变种2.4 堆排序 3. 交换排序3.1 基本思想3.2 冒泡排序3.3 快速排序3.3.1 快速排序的基本结构3.3.2 Hoare法3.3.3 挖坑法3.3.4 双指针法 3.4 快速排序非…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...