当前位置: 首页 > news >正文

算法整理:2-opt求解旅行商(Python代码)

文章目录

      • 算法思想
      • 算法步骤
      • 代码1·纯函数
      • 代码2·纯函数+数据+可视化

算法思想

通过交换边进行寻优。
在这里插入图片描述

算法步骤

  1. 把初始解作为当前解

  2. 通过交换边生成新解
    在这里插入图片描述

  3. 如果新解优于历史最优解,则更新当前解为新解

  4. 重复2,3,直到当前解交换了所有的边均不能改善。

代码1·纯函数

def two_opt(I, c):"""Two-opt 旅行商路径优化算法I: 城市编号的listc: 距离矩阵c[i,j]"""best_distance = sum(c[I[i], I[i + 1]] for i in range(len(I) - 1))best_solution = I[:]improve = Trues = 0while improve:improve = Falsefor i in range(len(I) - 1):for j in range(i + 1, len(I) - 1):if j - i >= 1:  # 确保至少有两个城市在i和j之间delta = (c[best_solution[i - 1], best_solution[j]] +c[best_solution[i], best_solution[j + 1]] -c[best_solution[i - 1], best_solution[i]] -c[best_solution[j], best_solution[j + 1]])if delta < -0.0001:# 进行反转操作best_solution[i:j + 1] = reversed(best_solution[i:j + 1])plot_route(cities, best_solution)best_distance += deltaimprove = Truereturn best_solution, best_distance
  • 注意代码中当i == 0时,best_solution[i - 1] =best_solution[- 1],指向了最后一个城市,由于是TSP问题,并不违反逻辑。

代码2·纯函数+数据+可视化

import time
import numpy as np
import matplotlib.pyplot as pltdef generate_random_cities(num_cities):"""生成随机的城市坐标及距离矩阵"""np.random.seed(3)   # 锁定随机种子cities = np.random.rand(num_cities, 2)  # 生成随机坐标distance_matrix = np.zeros((num_cities, num_cities))for i in range(num_cities):for j in range(num_cities):distance_matrix[i, j] = np.linalg.norm(cities[i] - cities[j])  # 计算欧几里得距离return cities, distance_matrixdef two_opt(I, c):"""Two-opt 旅行商路径优化算法I: 城市编号的listc: 距离矩阵c[i,j]"""best_distance = sum(c[I[i], I[i + 1]] for i in range(len(I) - 1))best_solution = I[:]improve = Trues = 0while improve:improve = Falsefor i in range(len(I) - 1):for j in range(i + 2, len(I) - 1):delta = (c[best_solution[i - 1], best_solution[j]] +c[best_solution[i], best_solution[j + 1]] -c[best_solution[i - 1], best_solution[i]] -c[best_solution[j], best_solution[j + 1]])if delta < -1e-6:# 进行反转操作best_solution[i:j + 1] = reversed(best_solution[i:j + 1])plot_route(cities, best_solution)best_distance += deltaimprove = Truereturn best_solution, best_distancedef plot_route(cities, solution):"""可视化城市和路径"""# 画出路径plt.plot(cities[solution][:, 0], cities[solution][:, 1], color='black', marker='o')plt.plot([cities[solution[0], 0], cities[solution[-1], 0]],[cities[solution[0], 1], cities[solution[-1], 1]], color='black', marker='o')  # 回到起点# 去掉坐标轴黑框ax = plt.gca()ax.spines['top'].set_color('none')ax.spines['right'].set_color('none')ax.spines['left'].set_color('none')ax.spines['bottom'].set_color('none')# 隐藏坐标轴刻度ax.xaxis.set_ticks_position('none')ax.yaxis.set_ticks_position('none')# 隐藏坐标轴刻度标签ax.set_xticks([]) ax.set_yticks([])# 每帧显示时间plt.pause(1)# 清空内容plt.cla()# 主程序
num_cities = 10  # 城市数量
cities, distance_matrix = generate_random_cities(num_cities)
I = list(range(num_cities))  # 编号的集合# 运行 two_opt 算法
optimized_solution, optimized_distance = two_opt(I, distance_matrix)# 打印结果
print("优化后的路径:", optimized_solution)
print("优化后的距离:", optimized_distance)# 可视化优化后的路径
plot_route(cities, optimized_solution)

相关文章:

算法整理:2-opt求解旅行商(Python代码)

文章目录 算法思想算法步骤代码1纯函数代码2纯函数数据可视化 算法思想 通过交换边进行寻优。 算法步骤 把初始解作为当前解 通过交换边生成新解 如果新解优于历史最优解&#xff0c;则更新当前解为新解 重复2&#xff0c;3&#xff0c;直到当前解交换了所有的边均不能改…...

状态模式

在软件开发过程中&#xff0c;我们经常会遇到这样的情况&#xff1a;一个对象的行为会随着其内部状态的改变而发生变化。例如&#xff0c;一个手机在不同状态下&#xff08;开机、关机、静音等&#xff09;对相同的操作&#xff08;如来电&#xff09;会有不同的反应。传统的解…...

RoHS 简介

RoHS&#xff08;Restriction of Hazardous Substances Directive&#xff0c;限制有害物质指令&#xff09;是欧盟制定的一项环保法规&#xff0c;旨在限制电气和电子设备中某些有害物质的使用&#xff0c;以减少这些产品对环境和人体健康的危害。 RoHS限制的有害物质及其限量…...

【Vim Masterclass 笔记26】S11L46:Vim 插件的安装、使用与日常管理

文章目录 Section 11&#xff1a;Vim PluginsS11L46 Managing Vim Plugins1 第三方插件管理工具2 安装插件使用的搜索引擎3 Vim 插件的安装方法4 存放 Vim 插件包的路径格式5 示例一&#xff1a;插件 NERDTree 的安装6 示例二&#xff1a;插件 ctrlp.vim 的安装7 示例三&#x…...

深度学习原理与Pytorch实战

深度学习原理与Pytorch实战 第2版 强化学习人工智能神经网络书籍 python动手学深度学习框架书 TransformerBERT图神经网络&#xff1a; 技术讲解 编辑推荐 1.基于PyTorch新版本&#xff0c;涵盖深度学习基础知识和前沿技术&#xff0c;由浅入深&#xff0c;通俗易懂&#xf…...

ELK环境搭建

文章目录 1.ElasticSearch安装1.安装的版本选择1.SpringBoot版本&#xff1a;2.4.2 找到依赖的spring-data-elasticsearch的版本2.spring-data-elasticsearch版本&#xff1a;4.1.3 找到依赖的elasticsearch版本3.elasticsearch版本&#xff1a;7.9.3 2.安装1.官方文档2.下载压…...

基于Springboot + vue实现的民俗网

“前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站&#xff1a;人工智能学习网站” &#x1f496;学习知识需费心&#xff0c; &#x1f4d5;整理归纳更费神。 &#x1f389;源码免费人人喜…...

第24篇 基于ARM A9处理器用汇编语言实现中断<六>

Q&#xff1a;怎样设计ARM处理器汇编语言程序使用定时器中断实现实时时钟&#xff1f; A&#xff1a;此前我们曾使用轮询定时器I/O的方式实现实时时钟&#xff0c;而在本实验中将采用定时器中断的方式。新增第三个中断源A9 Private Timer&#xff0c;对该定时器进行配置&#…...

【数据结构】_不带头非循环单向链表

目录 1. 链表的概念及结构 2. 链表的分类 3. 单链表的实现 3.1 SList.h头文件 3.2 SList.c源文件 3.3 Test_SList.c测试文件 关于线性表&#xff0c;已介绍顺序表&#xff0c;详见下文&#xff1a; 【数据结构】_顺序表-CSDN博客 本文介绍链表&#xff1b; 基于顺序表…...

golang 使用双向链表作为container/heap的载体

MyHeap&#xff1a;container/heap的数据载体&#xff0c;需要实现以下方法&#xff1a; Len&#xff1a;堆中数据个数 Less&#xff1a;第i个元素 是否必 第j个元素 值小 Swap&#xff1a;交换第i个元素和 第j个元素 Push&#xff1a;向堆中追加元素 Pop&#xff1a;从堆…...

C#集合操作优化:高效实现批量添加与删除

在C#中&#xff0c;对集合进行批量操作&#xff08;如批量添加或删除元素&#xff09;通常涉及使用集合类型提供的方法和特性&#xff0c;以及可能的循环或LINQ查询来高效地处理大量数据。以下是一些常见的方法和技巧&#xff1a; 批量添加元素 使用集合的AddRange方法&#x…...

142.WEB渗透测试-信息收集-小程序、app(13)

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a; 易锦网校会员专享课 上一个内容&#xff1a;141.WEB渗透测试-信息收集-小程序、app&#xff08;12&#xff09; 软件用法&#xff0c…...

24.日常算法

1. 数组中两元素的最大乘积 题目来源 给你一个整数数组 nums&#xff0c;请你选择数组的两个不同下标 i 和 j&#xff0c;使 (nums[i]-1)*(nums[j]-1) 取得最大值。请你计算并返回该式的最大值。 示例 1&#xff1a; 输入&#xff1a;nums [3,4,5,2] 输出&#xff1a;12 解释…...

分布式理解

分布式 如何理解分布式 狭义的分布是指&#xff0c;指多台PC在地理位置上分布在不同的地方。 分布式系统 分布式系**统&#xff1a;**多个能独立运行的计算机&#xff08;称为结点&#xff09;组成。各个结点利用计算机网络进行信息传递&#xff0c;从而实现共同的“目标或者任…...

wordpress调用指定ID页面的链接

在WordPress中&#xff0c;如果你想调用一个指定ID的页面链接&#xff0c;可以使用以下几种方法&#xff1a; 方法一&#xff1a;使用页面ID 你可以直接使用页面的ID来生成链接。例如&#xff0c;如果你想链接到ID为123的页面&#xff0c;可以使用以下代码&#xff1a; <…...

单值二叉树(C语言详解版)

一、摘要 今天要讲的是leetcode单值二叉树&#xff0c;这里用到的C语言&#xff0c;主要提供的是思路&#xff0c;大家看了我的思路之后可以点击链接自己试一下。 二、题目简介 如果二叉树每个节点都具有相同的值&#xff0c;那么该二叉树就是单值二叉树。 只有给定的树是单…...

python学opencv|读取图像(四十二)使用cv2.add()函数实现多图像叠加

【1】引言 前序学习过程中&#xff0c;掌握了灰度图像和彩色图像的掩模操作&#xff1a; python学opencv|读取图像&#xff08;九&#xff09;用numpy创建黑白相间灰度图_numpy生成全黑图片-CSDN博客 python学opencv|读取图像&#xff08;四十&#xff09;掩模&#xff1a;三…...

速通Docker === Docker Compose

目录 Docker Compose 简介 Docker Compose 常用命令 使用 Docker Compose 启动 WordPress 普通启动方式&#xff08;使用 Docker 命令&#xff09; 使用 Docker Compose 启动 Docker Compose 的特性 Docker Compose 简介 Docker Compose 是一个用于定义和运行多容器 Dock…...

LMI Gocator GO_SDK VS2019引用配置

LMI SDK在VS2019中的引用是真的坑爹,总结一下经验,希望后来的人能少走弯路.大致内容如下: &#xff08;1&#xff09; 环境变量 &#xff08;2&#xff09;C/C 附加包含目录 E:\GWQ\Gocator\GO_SDK\Gocator\GoSdk E:\GWQ\Gocator\GO_SDK\Platform\kApi &#xff08;3&#…...

技术之翼,创作之心

引言&#xff1a;初入编程的迷茫与追求 当我第一次接触到编程时&#xff0c;心中充满了既期待又迷茫的情感。那时&#xff0c;我还是一名刚刚踏入大学的学生&#xff0c;面对一门陌生而复杂的学科——计算机科学&#xff0c;我的内心充满了好奇与困惑。课堂上&#xff0c;老师…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

前端开发者常用网站

Can I use网站&#xff1a;一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use&#xff1a;Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站&#xff1a;MDN JavaScript权威网站&#xff1a;JavaScript | MDN...

2.2.2 ASPICE的需求分析

ASPICE的需求分析是汽车软件开发过程中至关重要的一环&#xff0c;它涉及到对需求进行详细分析、验证和确认&#xff0c;以确保软件产品能够满足客户和用户的需求。在ASPICE中&#xff0c;需求分析的关键步骤包括&#xff1a; 需求细化&#xff1a;将从需求收集阶段获得的高层需…...

高保真组件库:开关

一:制作关状态 拖入一个矩形作为关闭的底色:44 x 22,填充灰色CCCCCC,圆角23,边框宽度0,文本为”关“,右对齐,边距2,2,6,2,文本颜色白色FFFFFF。 拖拽一个椭圆,尺寸18 x 18,边框为0。3. 全选转为动态面板状态1命名为”关“。 二:制作开状态 复制关状态并命名为”开…...