当前位置: 首页 > news >正文

亚博microros小车-原生ubuntu支持系列:11手指控制与手势识别

识别框架还是沿用之前的了MediaPipe Hand。

背景知识不摘重复,参见之前的:亚博microros小车-原生ubuntu支持系列:10-画笔-CSDN博客

手指控制

src/yahboom_esp32_mediapipe/yahboom_esp32_mediapipe/目录下新建文件10_HandCtrl.py,代码如下:

#!/usr/bin/env python3
# encoding: utf-8
import math
import time
import cv2 as cv
import numpy as np
import mediapipe as mp
import rclpy
from rclpy.node import Node
from cv_bridge import CvBridge
from sensor_msgs.msg import Image, CompressedImagefrom rclpy.time import Time
import datetimevolPer = value = index = 0
effect = ["color", "thresh", "blur", "hue", "enhance"]
volBar = 400
class handDetector:def __init__(self, mode=False, maxHands=2, detectorCon=0.5, trackCon=0.5):self.tipIds = [4, 8, 12, 16, 20]self.mpHand = mp.solutions.handsself.mpDraw = mp.solutions.drawing_utilsself.hands = self.mpHand.Hands(#模型初始化static_image_mode=mode,max_num_hands=maxHands,min_detection_confidence=detectorCon,min_tracking_confidence=trackCon)self.lmDrawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 0, 255), thickness=-1, circle_radius=15)self.drawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 255, 0), thickness=10, circle_radius=10)#距离计算def get_dist(self, point1, point2):x1, y1 = point1x2, y2 = point2return abs(math.sqrt(math.pow(abs(y1 - y2), 2) + math.pow(abs(x1 - x2), 2)))#计算角度def calc_angle(self, pt1, pt2, pt3):point1 = self.lmList[pt1][1], self.lmList[pt1][2]point2 = self.lmList[pt2][1], self.lmList[pt2][2]point3 = self.lmList[pt3][1], self.lmList[pt3][2]a = self.get_dist(point1, point2)b = self.get_dist(point2, point3)c = self.get_dist(point1, point3)try:#余弦定理radian = math.acos((math.pow(a, 2) + math.pow(b, 2) - math.pow(c, 2)) / (2 * a * b))angle = radian / math.pi * 180#弧度转角度except:angle = 0return abs(angle)def findHands(self, frame, draw=True):img = np.zeros(frame.shape, np.uint8)img_RGB = cv.cvtColor(frame, cv.COLOR_BGR2RGB)#图像格式转换self.results = self.hands.process(img_RGB)#检测if self.results.multi_hand_landmarks:for handLms in self.results.multi_hand_landmarks:#输出关键点if draw: self.mpDraw.draw_landmarks(img, handLms, self.mpHand.HAND_CONNECTIONS)return imgdef findPosition(self, frame, draw=True):self.lmList = []if self.results.multi_hand_landmarks:for id, lm in enumerate(self.results.multi_hand_landmarks[0].landmark):# print(id,lm)h, w, c = frame.shapecx, cy = int(lm.x * w), int(lm.y * h)# print(id, lm.x, lm.y, lm.z)self.lmList.append([id, cx, cy])#记录指点序号与坐标if draw: cv.circle(frame, (cx, cy), 15, (0, 0, 255), cv.FILLED)return self.lmListdef frame_combine(slef,frame, src):if len(frame.shape) == 3:frameH, frameW = frame.shape[:2]srcH, srcW = src.shape[:2]dst = np.zeros((max(frameH, srcH), frameW + srcW, 3), np.uint8)dst[:, :frameW] = frame[:, :]dst[:, frameW:] = src[:, :]else:src = cv.cvtColor(src, cv.COLOR_BGR2GRAY)frameH, frameW = frame.shape[:2]imgH, imgW = src.shape[:2]dst = np.zeros((frameH, frameW + imgW), np.uint8)dst[:, :frameW] = frame[:, :]dst[:, frameW:] = src[:, :]return dstclass MY_Picture(Node):def __init__(self, name):super().__init__(name)self.bridge = CvBridge()self.sub_img = self.create_subscription(CompressedImage, '/espRos/esp32camera', self.handleTopic, 1) #获取esp32传来的图像self.hand_detector = handDetector()self.volPer = self.value = self.index = 0self.effect = ["color", "thresh", "blur", "hue", "enhance"]self.volBar = 400self.last_stamp = Noneself.new_seconds = 0self.fps_seconds = 1def handleTopic(self, msg):self.last_stamp = msg.header.stamp  if self.last_stamp:total_secs = Time(nanoseconds=self.last_stamp.nanosec, seconds=self.last_stamp.sec).nanosecondsdelta = datetime.timedelta(seconds=total_secs * 1e-9)seconds = delta.total_seconds()*100if self.new_seconds != 0:self.fps_seconds = seconds - self.new_secondsself.new_seconds = seconds#保留这次的值start = time.time()frame = self.bridge.compressed_imgmsg_to_cv2(msg)frame = cv.resize(frame, (640, 480))action = cv.waitKey(1) & 0xFFimg  = self.hand_detector.findHands(frame)lmList = self.hand_detector.findPosition(frame, draw=False)if len(lmList) != 0:angle = self.hand_detector.calc_angle(4, 0, 8)#计算拇指,0点,食指尖的角度x1, y1 = lmList[4][1], lmList[4][2]x2, y2 = lmList[8][1], lmList[8][2]cx, cy = (x1 + x2) // 2, (y1 + y2) // 2cv.circle(img, (x1, y1), 15, (255, 0, 255), cv.FILLED)cv.circle(img, (x2, y2), 15, (255, 0, 255), cv.FILLED)cv.line(img, (x1, y1), (x2, y2), (255, 0, 255), 3)cv.circle(img, (cx, cy), 15, (255, 0, 255), cv.FILLED)if angle <= 10: cv.circle(img, (cx, cy), 15, (0, 255, 0), cv.FILLED)self.volBar = np.interp(angle, [0, 70], [400, 150])self.volPer = np.interp(angle, [0, 70], [0, 100])self.value = np.interp(angle, [0, 70], [0, 255])# print("angle: {},self.value: {}".format(angle, self.value))print(f'mode:{self.effect[self.index]}')# 进行阈值二值化操作,大于阈值value的,使用255表示,小于阈值value的,使用0表示if self.effect[self.index]=="thresh":gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)frame = cv.threshold(gray, self.value, 255, cv.THRESH_BINARY)[1]# 进行高斯滤波,(21, 21)表示高斯矩阵的长与宽都是21,标准差取valueelif self.effect[self.index]=="blur":frame = cv.GaussianBlur(frame, (21, 21), np.interp(self.value, [0, 255], [0, 11]))# 色彩空间的转化,HSV转换为BGRelif self.effect[self.index]=="hue":frame = cv.cvtColor(frame, cv.COLOR_BGR2HSV)frame[:, :, 0] += int(self.value)frame = cv.cvtColor(frame, cv.COLOR_HSV2BGR)# 调节对比度elif self.effect[self.index]=="enhance":enh_val = self.value / 40clahe = cv.createCLAHE(clipLimit=enh_val, tileGridSize=(8, 8))lab = cv.cvtColor(frame, cv.COLOR_BGR2LAB)lab[:, :, 0] = clahe.apply(lab[:, :, 0])frame = cv.cvtColor(lab, cv.COLOR_LAB2BGR)if action == ord('f'):self.index += 1if self.index >= len(self.effect): self.index = 0end = time.time()fps = 1 / ((end - start)+self.fps_seconds)text = "FPS : " + str(int(fps))cv.putText(frame, text, (20, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 1)cv.rectangle(img, (50, 150), (85, 400), (255, 0, 0), 3)cv.rectangle(img, (50, int(self.volBar)), (85, 400), (0, 255, 0), cv.FILLED)cv.putText(img, f'{int(self.volPer)}%', (40, 450), cv.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 3)dst = self.hand_detector.frame_combine(frame, img)cv.imshow('dst', dst)def main():print("start it")rclpy.init()esp_img = MY_Picture("My_Picture")try:rclpy.spin(esp_img)except KeyboardInterrupt:passfinally:esp_img.destroy_node()rclpy.shutdown()

订阅esp32传出来的图像后,通过MediaPipe去做相关的识别后,再通过记录手指的点坐标,计算角4-0-8之间度数。本节与之前不同,增加了opencv输出的格式,"color", "thresh", "blur", "hue", "enhance"。默认是color,还有阈值化输出,高斯模糊等其他效果。按F键切换

构建后运行:

ros2 run yahboom_esp32_mediapipe HandCtrl

效果如下:

手势识别

src/yahboom_esp32_mediapipe/yahboom_esp32_mediapipe/目录下新建文件11_GestureRecognition.py,代码如下

#!/usr/bin/env python3
# encoding: utf-8
import math
import time
import cv2 as cv
import numpy as np
import mediapipe as mp
import rclpy
from rclpy.node import Node
from cv_bridge import CvBridge
from sensor_msgs.msg import Image, CompressedImagefrom rclpy.time import Time
import datetimeclass handDetector:def __init__(self, mode=False, maxHands=2, detectorCon=0.5, trackCon=0.5):self.tipIds = [4, 8, 12, 16, 20]self.mpHand = mp.solutions.handsself.mpDraw = mp.solutions.drawing_utilsself.hands = self.mpHand.Hands(static_image_mode=mode,max_num_hands=maxHands,min_detection_confidence=detectorCon,min_tracking_confidence=trackCon)self.lmList = []self.lmDrawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 0, 255), thickness=-1, circle_radius=6)self.drawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2)def get_dist(self, point1, point2):x1, y1 = point1x2, y2 = point2return abs(math.sqrt(math.pow(abs(y1 - y2), 2) + math.pow(abs(x1 - x2), 2)))def calc_angle(self, pt1, pt2, pt3):point1 = self.lmList[pt1][1], self.lmList[pt1][2]point2 = self.lmList[pt2][1], self.lmList[pt2][2]point3 = self.lmList[pt3][1], self.lmList[pt3][2]a = self.get_dist(point1, point2)b = self.get_dist(point2, point3)c = self.get_dist(point1, point3)try:radian = math.acos((math.pow(a, 2) + math.pow(b, 2) - math.pow(c, 2)) / (2 * a * b))angle = radian / math.pi * 180except:angle = 0return abs(angle)def findHands(self, frame, draw=True):self.lmList = []img = np.zeros(frame.shape, np.uint8)img_RGB = cv.cvtColor(frame, cv.COLOR_BGR2RGB)self.results = self.hands.process(img_RGB)if self.results.multi_hand_landmarks:for i in range(len(self.results.multi_hand_landmarks)):if draw: self.mpDraw.draw_landmarks(frame, self.results.multi_hand_landmarks[i], self.mpHand.HAND_CONNECTIONS, self.lmDrawSpec, self.drawSpec)self.mpDraw.draw_landmarks(img, self.results.multi_hand_landmarks[i], self.mpHand.HAND_CONNECTIONS, self.lmDrawSpec, self.drawSpec)for id, lm in enumerate(self.results.multi_hand_landmarks[i].landmark):h, w, c = frame.shapecx, cy = int(lm.x * w), int(lm.y * h)self.lmList.append([id, cx, cy])return frame, imgdef frame_combine(slef,frame, src):if len(frame.shape) == 3:frameH, frameW = frame.shape[:2]srcH, srcW = src.shape[:2]dst = np.zeros((max(frameH, srcH), frameW + srcW, 3), np.uint8)dst[:, :frameW] = frame[:, :]dst[:, frameW:] = src[:, :]else:src = cv.cvtColor(src, cv.COLOR_BGR2GRAY)frameH, frameW = frame.shape[:2]imgH, imgW = src.shape[:2]dst = np.zeros((frameH, frameW + imgW), np.uint8)dst[:, :frameW] = frame[:, :]dst[:, frameW:] = src[:, :]return dstdef fingersUp(self):fingers=[]# Thumbif (self.calc_angle(self.tipIds[0],self.tipIds[0] - 1,self.tipIds[0] - 2) > 150.0) and (self.calc_angle(self.tipIds[0] - 1,self.tipIds[0] - 2,self.tipIds[0] - 3) > 150.0): fingers.append(1)else:fingers.append(0)# 4 fingerfor id in range(1, 5):if self.lmList[self.tipIds[id]][2] < self.lmList[self.tipIds[id] - 2][2]:fingers.append(1)else:fingers.append(0)return fingersdef get_gesture(self):gesture = ""fingers = self.fingersUp()if self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[1]][2] and \self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[2]][2] and \self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[3]][2] and \self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[4]][2] : gesture = "Thumb_down"elif self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[1]][2] and \self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[2]][2] and \self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[3]][2] and \self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[4]][2] and \self.calc_angle(self.tipIds[1] - 1, self.tipIds[1] - 2, self.tipIds[1] - 3) < 150.0 : gesture = "Thumb_up"if fingers.count(1) == 3 or fingers.count(1) == 4:if fingers[0] == 1 and (self.get_dist(self.lmList[4][1:], self.lmList[8][1:])<self.get_dist(self.lmList[4][1:], self.lmList[5][1:])): gesture = "OK"elif fingers[2] == fingers[3] == 0: gesture = "Rock"elif fingers.count(1) == 3: gesture = "Three"else: gesture = "Four"elif fingers.count(1) == 0: gesture = "Zero"elif fingers.count(1) == 1: gesture = "One"elif fingers.count(1) == 2:if fingers[0] == 1 and fingers[4] == 1: gesture = "Six"elif fingers[0] == 1 and self.calc_angle(4, 5, 8) > 90: gesture = "Eight"elif fingers[0] == fingers[1] == 1 and self.get_dist(self.lmList[4][1:], self.lmList[8][1:]) < 50: gesture = "Heart_single"else: gesture = "Two"elif fingers.count(1)==5:gesture = "Five"if self.get_dist(self.lmList[4][1:], self.lmList[8][1:]) < 60 and \self.get_dist(self.lmList[4][1:], self.lmList[12][1:]) < 60 and \self.get_dist(self.lmList[4][1:], self.lmList[16][1:]) < 60 and \self.get_dist(self.lmList[4][1:], self.lmList[20][1:]) < 60 : gesture = "Seven"if self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[1]][2] and \self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[2]][2] and \self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[3]][2] and \self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[4]][2] and \self.calc_angle(self.tipIds[1] - 1, self.tipIds[1] - 2, self.tipIds[1] - 3) > 150.0 : gesture = "Eight"return gestureclass MY_Picture(Node):def __init__(self, name):super().__init__(name)self.bridge = CvBridge()self.sub_img = self.create_subscription(CompressedImage, '/espRos/esp32camera', self.handleTopic, 1) #获取esp32传来的图像self.hand_detector = handDetector(detectorCon=0.75)self.last_stamp = Noneself.new_seconds = 0self.fps_seconds = 1def handleTopic(self, msg):self.last_stamp = msg.header.stamp  if self.last_stamp:total_secs = Time(nanoseconds=self.last_stamp.nanosec, seconds=self.last_stamp.sec).nanosecondsdelta = datetime.timedelta(seconds=total_secs * 1e-9)seconds = delta.total_seconds()*100if self.new_seconds != 0:self.fps_seconds = seconds - self.new_secondsself.new_seconds = seconds#保留这次的值start = time.time()frame = self.bridge.compressed_imgmsg_to_cv2(msg)frame = cv.resize(frame, (640, 480))cv.waitKey(1) frame, img = self.hand_detector.findHands(frame, draw=False)if len(self.hand_detector.lmList) != 0:totalFingers = self.hand_detector.get_gesture()cv.rectangle(frame, (0, 430), (230, 480), (0, 255, 0), cv.FILLED)cv.putText(frame, str(totalFingers), (10, 470), cv.FONT_HERSHEY_PLAIN, 2, (255, 0, 0), 2)end = time.time()fps = 1 / ((end - start)+self.fps_seconds)text = "FPS : " + str(int(fps))cv.putText(frame, text, (20, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 1)dist = self.hand_detector.frame_combine(frame, img)cv.imshow('dist', dist)'''
Zero One Two Three Four Five Six Seven Eight
Ok: OK
Rock: rock
Thumb_up : 点赞
Thumb_down: 拇指向下
Heart_single: 单手比心
'''def main():print("start it")rclpy.init()esp_img = MY_Picture("My_Picture")try:rclpy.spin(esp_img)except KeyboardInterrupt:passfinally:esp_img.destroy_node()rclpy.shutdown()

网上有不少这个例子,差异点可能在手势识别哪里,前面的hand模型都是一样的。

根据你预计的指点判断角度或者漏出的手指组合判断含义。有的也不太准确,大部分能识别。

构建后运行:ros2 run yahboom_esp32_mediapipe GestureRecognition

相关文章:

亚博microros小车-原生ubuntu支持系列:11手指控制与手势识别

识别框架还是沿用之前的了MediaPipe Hand。 背景知识不摘重复&#xff0c;参见之前的&#xff1a;亚博microros小车-原生ubuntu支持系列&#xff1a;10-画笔-CSDN博客 手指控制 src/yahboom_esp32_mediapipe/yahboom_esp32_mediapipe/目录下新建文件10_HandCtrl.py&#xff…...

JAVA-快速排序

目录 一、快速排序基本思想 二、快速排序的实现 1.Hoare法找基准值 2.挖坑法 3.前后指针法(了解) 三、快速排序的优化 1.三数取中法 2.递归到小的子区间时&#xff0c;可以考虑使用插入排序 四、非递归的写法 五、时间空间复杂度 一、快速排序基本思想 快速排序是 H…...

日志收集Day003

1.索引模板 查看所有索引模板 GET 10.0.0.101:9200/_template 2.查看单个索引模板 GET 10.0.0.101:9200/_template/.monitoring-es 3.创建索引模板 POST 10.0.0.101:9200/_template/lxctp {"aliases": {"DBA": {},"SRE": {},"K8S&qu…...

基于quartz,刷新定时器的cron表达式

文章目录 前言基于quartz&#xff0c;刷新定时器的cron表达式1. 先看一下测试效果2. 实现代码 前言 如果您觉得有用的话&#xff0c;记得给博主点个赞&#xff0c;评论&#xff0c;收藏一键三连啊&#xff0c;写作不易啊^ _ ^。   而且听说点赞的人每天的运气都不会太差&…...

数学大模型MAmmoTH:通过混合说明调整建立数学通才模型

向悦和陈文虎是该项目的主要作者。他们这个项目推出 MAmmoTH&#xff0c;这是一系列专为解决一般数学问题而定制的开源大型语言模型 (LLM)。 MAmmoTH 模型在 MathInstruct 上进行训练&#xff0c;MathInstruct 是我们精心策划的指令调整数据集。 MathInstruct 已编译 来自 13 个…...

Opencv学习

Long time no see!哈哈&#xff0c;假期终于有时间做一点自己喜欢的东西了 还是想说&#xff0c;每天花一点时间投在自己喜欢的事情上&#xff0c;或者专攻一些平时不学的方向&#xff0c;真的很酷&#xff01; 图片绘制 对于图像绘制&#xff0c;可以分为&#xff1a;图像创…...

python生成图片和pdf,快速

1、下载安装 pip install imgkit pip install pdfkit2、wkhtmltopdf工具包&#xff0c;下载安装 下载地址&#xff1a;https://wkhtmltopdf.org/downloads.html 3、生成图片 import imgkit path_wkimg rD:\app\wkhtmltopdf\bin\wkhtmltoimage.exe # 工具路径&#xff0c;安…...

剑指Offer|LCR 044.在每个树行中找最大值

LCR 044.在每个树行中找最大值 给定一棵二叉树的根节点 root &#xff0c;请找出该二叉树中每一层的最大值。 示例 1&#xff1a; 输入: root [1,3,2,5,3,null,9] 输出: [1,3,9] 解释:1/ \3 2/ \ \ 5 3 9 示例 2&#xff1a; 输入: root [1,2,3] 输出: [1,3] 解…...

PWM信号概述

什么是PWM信号&#xff1f; PWM&#xff08;Pulse-width modulation&#xff09;是脉冲宽度调制的缩写。 脉冲宽度调制是一种模拟信号电平数字编码方法。 脉冲宽度调制PWM是通过将有效的电信号分散成离散形式从而来降低电信号所传递的平均功率的一种方式。所以根据面积等效法…...

关于BAR(PCIE BAR或AXI BAR)的解释

假设某BAR的默认值是xxxx_0000&#xff08;这里表示8个比特位&#xff09;&#xff0c;其中低4位不可写&#xff0c;可操作的最低位是4&#xff0c;所以该BAR的大小是2^416字节&#xff1b; 1、系统软件向BAR写0xFF 2、系统软件读BAR&#xff0c;读到的值是0xF0&#xff0c;于是…...

计算机的错误计算(二百二十一)

摘要 利用一个数学解题器化简计算 实验表明&#xff0c;即使是数学解题器&#xff0c;也是一派胡言。 有一读者来信&#xff0c;询问数学大模型的推理事宜。现就前面的案例继续做一讨论。 例1. 化简计算摘要中算式。 下面是与一个数学解题器的对话。 点评&#xff1a; &am…...

【力扣Hot 100】矩阵1

矩阵置零&#xff1a;1. 开两个数组判断该行/该列是否有0&#xff1b;2. 用第0行/第0列分别判断该列/该行是否有0 螺旋矩阵&#xff1a;记录方向&#xff0c;一直按某方向前进&#xff0c;遇到障碍方向就变一下 1. 矩阵置零 给定一个 *m* x *n* 的矩阵&#xff0c;如果一个元…...

移动端VR处理器和传统显卡的不同

骁龙 XR 系列芯片 更多地依赖 AI 技术 来优化渲染过程&#xff0c;而传统的 GPU 渲染 则倾向于在低画质下运行以减少负载。这种设计是为了在有限的硬件资源下&#xff08;如移动端 XR 设备&#xff09;实现高性能和低功耗的平衡。以下是具体的分析&#xff1a; 1. AI 驱动的渲染…...

「 机器人 」利用数据驱动模型替代仿真器:加速策略训练并降低硬件依赖

前言 在强化学习(Reinforcement Learning, RL)中,策略训练需要大量的交互数据(状态、动作、奖励、下一状态),而这些数据通常来自仿真器或真实硬件。传统高保真仿真器虽然能在一定程度上模拟飞行器的动力学,但往往计算量大、开发成本高,且仍可能与真实环境存在差距。为此…...

MATLAB 如何避免复杂shp文件对inpolygon的影响

**任务描述&#xff1a;**当我想用inpolygon函数将属于非洲的pixel选出来时&#xff0c;发现因为周边小岛的影响&#xff0c;pixel选取有问题&#xff0c;如下图。 第一种解决办法&#xff1a; 首先将复杂shp文件查分成简单的shp文件&#xff0c;即将不相交的元素分离开 [QGIS…...

【2024年华为OD机试】 (C卷,200分)- 贪吃的猴子(JavaScriptJava PythonC/C++)

一、问题描述 题目解析 问题描述 一只猴子来到果园&#xff0c;发现许多串香蕉排成一行&#xff0c;每串香蕉上有若干根香蕉。每串香蕉的根数由数组 numbers 给出。猴子每次只能从行的开头或末尾获取香蕉&#xff0c;并且只能获取 N 次。求猴子最多能获取多少根香蕉。 输入…...

PostgreSQL中级专家是什么意思?

数据库技术领域&#xff0c;PostgreSQL 作为一种广泛使用的开源关系型数据库管理系统&#xff0c;吸引了众多技术人员深入学习和研究。“PostgreSQL 中级专家” 是对掌握该数据库特定技能层次的一种描述。 知识储备 中级专家深入理解 PostgreSQL 的体系结构&#xff0c;包括进程…...

从根源分析,调试,定位和解决MacOS ld: unsupported tapi file type ‘!tapi-tbd‘ in YAML file

你要是遇到同样错误&#xff0c;找一圈都没有解决&#xff0c;建议认真读一下本文&#xff0c;这个应该是最终极的解决办法&#xff0c;从原理上剖析了产生的原因&#xff0c;同时给出来了调试和定位的办法。 maccos使用brew安装了一个gcc14, 结果编译一个最简单的程序都报错&a…...

【Uniapp-Vue3】previewImage图片预览

如果我们想要实现点击一张图片放大&#xff0c;并能够左右滑动&#xff0c;就要使用previewImage这个API。 uni.previewImage({ current:xxx, // 当前图片下标 urls:xxx, // 图片路径组 // 其他参数 }) 我们先编写一个点击图片的事件&#xff0c;并传递当前点击图片的下标&…...

doris:Insert Into Values

INSERT INTO VALUES 语句支持将 SQL 中的值导入到 Doris 的表中。INSERT INTO VALUES 是一个同步导入方式&#xff0c;执行导入后返回导入结果。可以通过请求的返回判断导入是否成功。INSERT INTO VALUES 可以保证导入任务的原子性&#xff0c;要么全部导入成功&#xff0c;要么…...

15 分布式锁和分布式session

在java中一个进程里面使用synchronized在new出来对象头信息中加锁&#xff0c;如果是静态方法中在加载的类信息中加锁(我们在锁的原理中讲过)。如果使用lock加锁可以自己指定。这些都是在同一个进程空间中的操作。如果在分布式环境中由于程序不在一个进程空间&#xff0c;就没办…...

迅为RK3568开发板篇OpenHarmony实操HDF驱动控制LED-添加内核编译

编译内核时将该 HDF 驱动编译到镜像中&#xff0c;接下来编写驱动编译脚本 Makefile&#xff0c;代码如下所示&#xff1a; 加入编译体系&#xff0c;填加模块目录到 drivers/hdf_core/adapter/khdf/linux/Makefile 文件 更多内容可以关注&#xff1a;迅为RK3568开发板篇OpenHa…...

C语言练习(23)

求两个整数的最大公约数和最小公倍数&#xff0c;用一个函数求最大公约数&#xff0c;用另一函数根据求出的最大公约数求最小公倍数。 ①不用全局变量&#xff0c;分别用两个函数求最大公约数和最小公倍数。两个整数在主函数中输入&#xff0c;并传送给函数f1&#xff0c;求出…...

LabVIEW 太阳能光伏发电系统智能监控

本文介绍了基于 LabVIEW 的太阳能光伏发电监控系统的设计与实现&#xff0c;着重探讨了其硬件配置、软件架构以及系统的实现方法。该系统能够有效提高太阳能光伏发电的监控效率和精确性&#xff0c;实现了远程监控和数据管理的智能化。 ​ 项目背景 在当前能源紧张与环境污染…...

大唐杯赛道一国一备赛思路

前情&#xff1a;本人非通信专业&#xff0c;打这个比赛纯粹为了保研加分&#xff0c;因为本人同届同学院的人参加了一次&#xff0c;获得了省级&#xff0c;加上有保研学长说这个比赛挺简单的&#xff0c;一直想参加的&#xff0c;机缘巧合下和另一个需要保研的同学组队&#…...

用户中心项目教程(五)---MyBatis-Plus完成后端初始化+测试方法

文章目录 1.数据库的链接和创建2.建库建表语句3.引入依赖4.yml配置文件5.添加相对路径6.实体类的书写7.Mapper接口的定义8.启动类的指定9.单元测试10运行时的bug 1.数据库的链接和创建 下面的这个就是使用的我们的IDEA链接这个里面的数据库&#xff1a; 接下来就是输入这个用户…...

深圳市云盟智慧科技有限公司智慧停车管理系统 SQL注入漏洞复现(附脚本)

免责申明: 本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。 0x0…...

PySide(PyQT)进行SQLite数据库编辑和前端展示的基本操作

以SQLite数据库为例&#xff0c;学习数据库的基本操作&#xff0c;使用QSql模块查询、编辑数据并在前端展示。 SQLite数据库的基础知识&#xff1a; https://blog.csdn.net/xulibo5828/category_12785993.html?fromshareblogcolumn&sharetypeblogcolumn&sharerId1278…...

利用 SAM2 模型探测卫星图像中的农田边界

将 Segment Anything Model Version 2 应用于卫星图像以检测和导出农业地区田地边界的分步教程 &#x1f31f; 简介 手动绘制田地边界是最耗时的任务之一&#xff0c;其准确性取决于绘制者的表现。然而&#xff0c;精确的边界检测在很多领域都有应用。例如&#xff0c;假设您…...

前端路由的hash模式和history模式

hash 模式和 history 模式是前端路由实现的两种常见方式&#xff0c;分别基于不同的浏览器特性实现。下面从浏览器实现、前端框架实现及相关标准定义三个方面详细解释这两种模式。 1. 浏览器实现 1.1 Hash 模式 • 核心机制&#xff1a; • 基于浏览器的 location.hash 属性…...