当前位置: 首页 > news >正文

ray.rllib 入门实践-2:配置算法

前言:

        ray.rllib的算法配置方式有多种,网上的不同教程各不相同,有的互不兼容,本文汇总罗列了多种算法配置方式,给出推荐,并在最后给出可运行代码。

四种配置方式

方法1

import os 
from ray.rllib.algorithms.ppo import PPO,PPOConfig
from ray.tune.logger import pretty_print## 配置算法
config = PPOConfig()\.rollouts(num_rollout_workers = 2)\.resources(num_gpus=0)\.environment(env="CartPole-v1")
algo = config.build()

缺点:不能在每行配置后面添加注释, 否则报错。 

方法2

import os 
from ray.rllib.algorithms.ppo import PPO,PPOConfig
from ray.tune.logger import pretty_print## 配置算法
algo = (PPOConfig().rollouts(num_rollout_workers=1)  ## 注释.resources(num_gpus=0).environment(env="CartPole-v1").build()
)

用"()"把配置过程括起来,每行后面可以添加注释,不报错。官方教程使用的该种方式。 

方式3:推荐

import os 
from ray.rllib.algorithms.ppo import PPO,PPOConfig
from ray.tune.logger import pretty_print## 配置算法2
storage_path = "F:/codes/RLlib_study/ray_results/build_method_3"
config = PPOConfig()
config = config.rollouts(num_rollout_workers=2)
config = config.resources(num_gpus=0,num_cpus_per_worker=1,num_gpus_per_worker=0)
config = config.environment(env="CartPole-v1",env_config={})
config.output = storage_path  ## 设置过程文件的存储路径
algo = config.build()

优点:每一行是一个完整的命令, 后面可以添加注释,可以直接给config类的成员变量赋值。比如上面代码示例中的:config.output = storage_path , 直接配置存储路径,而不用去寻找output变量属于哪一个PPOConfig子模块。 

方式4:

import os 
from ray.rllib.algorithms.ppo import PPO,PPOConfig
from ray.tune.logger import pretty_printstorage_path = "F:/codes/RLlib_study/ray_results/build_method_4"
os.makedirs(storage_path, exist_ok=True)
config = {"env":"CartPole-v1","env_config":{}, ## 用于传递给env的信息"frame_work":"torch","num_gpus":0,"num_workers":2,"num_cpus_per_worker":1,"num_envs_per_worker":1,"num_gpus_per_worker":0,"lr":0.001,"model":{"fcnet_hiddens":[256,256,64],"fcnet_activation":"tanh","custom_model_config":{},"custom_model":None},"output":storage_path
}
algo = PPO(config=config) ## 构建算法

        这种方式在ray1.4版本之前使用较多,是唯一的配置方式。随着ray的更新迭代,用class封装了configDict, 即上面的方法1,方法2,方法3所用的方式。用 PPOConfig 进行配置后,最终也是转成方法4中的字典传递给算法使用, 但是相比方法4的字典, 方法1、2、3可以在编程时有语法提示,告诉你有哪几个成员变量或成员函数可以用于设计config。 

        现在仍旧有很多人用方法4配置rllib算法,我认为这是从老版本传递下来的一种习惯,新上手的人建议使用 AlgorithmConfig的方式配置算法。

汇总代码:

from ray.rllib.algorithms.ppo import PPO,PPOConfig
from ray.tune.logger import pretty_print
import os ## 配置算法1
# config = PPOConfig()\
#         .rollouts(num_rollout_workers = 2)\
#         .resources(num_gpus=0)\
#         .environment(env="CartPole-v1")
# algo = config.build()# ## 配置算法2
# algo = (
#     PPOConfig()
#     .rollouts(num_rollout_workers=1) 
#     .resources(num_gpus=0)
#     .environment(env="CartPole-v1")
#     .build()
# )# ## 配置算法3
# storage_path = "F:/codes/RLlib_study/ray_results/build_method_4"
# os.makedirs(storage_path, exist_ok=True)
# config = PPOConfig()
# config = config.rollouts(num_rollout_workers=1) 
# config = config.resources(num_gpus=0)
# config = config.environment(env="CartPole-v1")
# config.output = storage_path
# algo = config.build()## 配置算法 4
storage_path = "F:/codes/RLlib_study/ray_results/build_method_4"
os.makedirs(storage_path, exist_ok=True)
config = {"env":"CartPole-v1","env_config":{}, ## 用于传递给env的信息"frame_work":"torch","num_gpus":0,"num_workers":2,"num_cpus_per_worker":1,"num_envs_per_worker":1,"num_gpus_per_worker":0,"lr":0.001,"model":{"fcnet_hiddens":[256,256,64],"fcnet_activation":"tanh","custom_model_config":{},"custom_model":None},"output":storage_path
}
algo = PPO(config=config) ## 构建算法## 训练模型. 每个 iter 里重复执行多次 episode. 直到满足条件, 比如新增采样量达到一定体量。
for i in range(2):result = algo.train()print(pretty_print(result))## 保存模型
checkpoint_dir = algo.save().checkpoint.path   
## algo.save()用于实现存储checkpoint, 后面跟着的.checkpoint.path用于返回存储路径
print(f"Checkpoint saved in directory {checkpoint_dir}")

相关文章:

ray.rllib 入门实践-2:配置算法

前言: ray.rllib的算法配置方式有多种,网上的不同教程各不相同,有的互不兼容,本文汇总罗列了多种算法配置方式,给出推荐,并在最后给出可运行代码。 四种配置方式 方法1 import os from ray.rllib.algori…...

2025-01学习笔记

1.SpEL 第一次知道它的全称 Spring Expression Language(SpEL) Value("${my.property}") private String myProperty; Value("#{2 * 3}") private int computedValue; 2.逃逸分析 逃逸分析:当一个对象在方法中被定…...

多线程执行大批量数据查询

// 创建一个固定大小的线程池ExecutorService executorService Executors.newFixedThreadPool(5);// 创建多个查询任务List<Callable<List<ShopCompareBase>>> tasks new ArrayList<>();//查询门店 切割,分成十份List<List<String>> sho…...

ChatGPT高效处理图片技巧使用详解

ChatGPT&#xff0c;作为OpenAI开发的预训练语言模型&#xff0c;主要用于生成自然语言文本的任务。然而&#xff0c;通过一些技巧和策略&#xff0c;我们可以将ChatGPT与图像处理模型结合&#xff0c;实现一定程度上的图像优化和处理。本文将详细介绍如何使用ChatGPT高效处理图…...

leetcode——相交链表(java)

给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 注意&#xff0c;函数返回结果后&…...

RubyFPV开源代码之系统简介

RubyFPV开源代码之系统简介 1. 源由2. 工程架构3. 特性介绍&#xff08;软件&#xff09;3.1 特性亮点3.2 数字优势3.3 使用功能 4. DEMO推荐&#xff08;硬件&#xff09;4.1 天空端4.2 地面端4.3 按键硬件Raspberry PiRadxa 3W/E/C 5. 软件设计6. 参考资料 1. 源由 RubyFPV以…...

麦田物语学习笔记:创建TransitionManager控制人物场景切换

基本流程 制作场景之间的切换 1.代码思路 (1)为了实现不同场景切换,并且保持当前的persistentScene一直存在,则需要一个Manager去控制场景的加载和卸载,并且在加载每一个场景之后,都要将当前的场景Set Active Scene,保证其为激活的场景,在卸载的时候也可以方便调用当前激活的场…...

后端SpringBoot学习项目-用户管理-增删改查-service层

仓库地址 在初版代码中&#xff0c;已经实现了基础的增删改查。 但是&#xff0c;逻辑处理都放在Controller层中并没有分为Service层&#xff0c;所以&#xff0c;代码升级时候必须补充上去。 代码结构 升级后的代码结构有所变化。 --common 公共插件 --controller…...

机器学习11-学习路径推荐

机器学习11-学习路径推荐 本文希望摒除AI学习商业宣传要素&#xff0c;推荐一条极简的AI学习路线&#xff01;推荐内容均为在线免费内容&#xff0c;如果有条件可以咨询专业的培训机构&#xff01; 文章目录 机器学习11-学习路径推荐[toc] 1-AI培训路线第一阶段 Python-人工智能…...

[ACTF2020 新生赛]Upload1

题目 以为是前端验证&#xff0c;试了一下PHP传不上去 可以创建一个1.phtml文件。对.phtml文件的解释: 是一个嵌入了PHP脚本的html页面。将以下代码写入该文件中 <script languagephp>eval($_POST[md]);</script><script languagephp>system(cat /flag);&l…...

【PyTorch】0.初识:从吃货角度理解张量

0.初识张量 PyTorch 是一个 Python 深度学习框架&#xff0c;它将数据封装成张量&#xff08;Tensor&#xff09;来进行运算。PyTorch 中的张量就是元素为同一种数据类型的多维矩阵。在 PyTorch 中&#xff0c;张量以 "类" 的形式封装起来&#xff0c;对张量的一些运…...

医学图像分析工具09.1:Brainstorm安装教程

1. 安装前准备 **官方安装包和数据&#xff1a;**https://neuroimage.usc.edu/bst/download.php **官方安装教程&#xff1a;**https://neuroimage.usc.edu/brainstorm/Installation Matlab 版本要求&#xff1a; 有 Matlab&#xff1a; R2009b (7.9) 或更高版本没有 Matlab&…...

springboot基于Spring Boot的智慧养老服务系统的设计与实现

系统介绍&#xff1a; 智慧养老服务系统是一种运用现代科技手段&#xff0c;整合各类养老资源&#xff0c;为老年人提供全方位、个性化服务的综合性平台。该系统通过智能化设备、大数据分析、云计算等技术&#xff0c;实现对老年人健康状况、生活需求的实时监控与精准匹配&…...

Linux内核中IPoIB驱动模块的初始化与实现

InfiniBand(IB)是一种高性能的网络互连技术,广泛应用于高性能计算(HPC)和数据中心。为了在InfiniBand网络上运行标准的IP协议栈,Linux内核提供了IP over InfiniBand(IPoIB)驱动模块。IPoIB允许在InfiniBand网络上传输IPv4和IPv6数据包,从而使得现有的IP应用程序能够无…...

WPS计算机二级•幻灯片的基础操作

听说这是目录哦 PPT的正确制作步骤&#x1f6e3;️认识PPT界面布局&#x1f3dc;️PPT基础操作 快捷键&#x1f3de;️制作PPT时 常用的快捷技巧&#x1f3d9;️快速替换PPT的 文本字体&#x1f303;快速替换PPT 指定文本内容&#x1f305;能量站&#x1f61a; PPT的正确制作步…...

.NET9增强OpenAPI规范,不再内置swagger

ASP.NETCore in .NET 9.0 OpenAPI官方文档ASP.NET Core API 应用中的 OpenAPI 支持概述 | Microsoft Learnhttps://learn.microsoft.com/zh-cn/aspnet/core/fundamentals/openapi/overview?viewaspnetcore-9.0https://learn.microsoft.com/zh-cn/aspnet/core/fundamentals/ope…...

基于微信小程序的民宿预订管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…...

网络(三) 协议

目录 1. IP协议; 2. 以太网协议; 3. DNS协议, ICMP协议, NAT技术. 1. IP协议: 1.1 介绍: 网际互连协议, 网络层是进行数据真正传输的一层, 进行数据从一个主机传输到另一个主机. 网络层可以将数据主机进行传送, 那么传输层保证数据可靠性, 一起就是TCP/IP协议. 路径选择: 确…...

【深度解析Java 20天速成】04_IDEA的安装与使用

【Why IDEA ?】 【注】JetBrains官方说明&#xff1a; 尽管我们采取了多种措施确保受访者的代表性&#xff0c;但结果可能会略微偏向 JetBrains 产品的用户&#xff0c;因为这些用户更有可能参加调查。 此外&#xff0c;2022年&#xff0c;某美国软件开发商在对近千名专业的Ja…...

gitlab处理空文件夹的提交或空文件夹提交失败

问题描述 厂家发给了我一个压缩包文件&#xff0c;压缩包解压之后本地编译没问题&#xff1b;推送到gitlab之后&#xff0c;再编译就报错了&#xff1b; 问题原因 经过分析之后发现&#xff0c;压缩包解压之后存在很多空文件夹&#xff1b;但是gitlab推送的时候&#xff0c;…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...

深入解析 ReentrantLock:原理、公平锁与非公平锁的较量

ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...