HUMANITY’S LAST EXAM (HLE) 综述:人工智能领域的“最终考试”
论文地址:Humanity’s Last Exam
1. 背景与动机
随着大型语言模型(LLMs)能力的飞速发展,其在数学、编程、生物等领域的任务表现已超越人类。为了系统地衡量这些能力,LLMs 需要接受基准测试(Benchmarks)的评估。然而,现有的基准测试,如 MMLU,已经无法满足需求:
- 饱和现象严重:顶尖的 LLMs 在这些基准测试中已经能够达到超过 90% 的准确率,难以准确反映 AI 能力的真实水平。
- 无法有效评估前沿能力:现有基准测试无法充分评估 AI 在人类知识前沿领域的进步。
为了解决上述问题,HUMANITY’S LAST EXAM (HLE) 应运而生,旨在成为评估 AI 学术能力的最终封闭式基准测试。
2. HLE 的核心特点
2.1 挑战性与前沿性
- 高难度:HLE 包含 3000 道 极具挑战性的问题,涵盖数学、人文、自然科学等 100 多个学科领域。
- 示例:
- 数学:涉及高阶数学概念,如自然变换、共变自然变换等。
- 化学:要求分析复杂的化学反应机理。
- 语言学:考察对古代语言(如圣经希伯来语)的深入理解。
- 其他:包括经典文学、生态学、计算机科学等领域的问题【详见图 2】。
- 示例:
- 前沿性:问题由全球近 1000 名来自 500 多家机构的领域专家(包括教授、研究人员、研究生等)共同开发,确保了问题的前沿性和专业性。
2.2 多模态与精确性
- 多模态:HLE 是多模态基准测试,10% 的问题需要同时理解文本和图像信息。
- 精确性:
- 问题格式:包括精确匹配题(模型提供精确字符串作为输出)和多项选择题(模型从五个或更多选项中选择一个)。
- 答案验证:所有问题都有明确的、客观的答案,便于自动化评分。
2.3 严格的质量控制
- 多阶段审核流程:
- LLM 难度检查:在提交之前,每个问题都会经过多个前沿 LLM 的测试。如果 LLM 能够正确回答,则该问题会被拒绝【详见图 4】。
- 专家评审:通过 LLM 测试的问题将进入两轮人工评审:
- 第一轮:由研究生级别的评审员进行多轮反馈和修订。
- 第二轮:由组织者和专家评审员进行最终审核,确保问题质量和符合提交标准。
- 社区反馈:发布后,将进行公开反馈期,收集研究社区的意见,以纠正数据集中的任何问题。
- 严格的提交标准:
- 问题必须精确、无歧义、可解决且无法通过简单搜索获得。
- 所有提交内容必须为原创作品或对已发表信息的非平凡合成。
- 问题通常需要研究生级别的专业知识或测试对高度专业主题的知识。
- 答案简短且易于验证,以支持自动评分。
- 禁止开放式问题、主观解释和与大规模杀伤性武器相关的内容。
3. HLE 的评估结果与分析
3.1 顶尖 LLM 的表现
- 准确率低:所有顶尖 LLM 在 HLE 上的准确率均低于 10%,表明当前 AI 能力与专家级学术表现之间存在显著差距【详见表 1】。
- 原因分析:
- 问题难度高:HLE 旨在筛选出 LLM 无法正确回答的问题。
- 模型推理噪声:模型在推理过程中存在固有噪声,导致其无法始终保持一致的表现。
- 原因分析:
- 校准误差高:模型在 HLE 上表现出较差的校准性,经常以高置信度提供错误答案,表明模型存在幻觉(hallucination)问题【详见表 1】。
- RMS 校准误差:衡量模型预测置信度与实际准确率之间的一致性。RMS 误差越高,表明模型越不善于识别自身能力的边界。
| 模型 | 准确率 (%) ↑ | RMS 校准误差 (%) |
|---|---|---|
| GPT-4O | 3.3 | 92.5 |
| GROK2 | 3.8 | 93.2 |
| CLAUDE3.5SONNET | 4.3 | 88.9 |
| GEMINI1.5PRO | 5.0 | 93.1 |
| GEMINI2.OFLASHTHINKING | 6.2 | 93.9 |
| O1 | 9.1 | 93.4 |
| DEEPSEEK-R1 | 9.4 | 81.8 |
3.2 推理与计算成本
- 推理成本高:具有推理能力的模型需要生成更多的标记(tokens),从而导致更高的计算成本【详见图 5】。
- 未来方向:未来的模型不仅需要在准确率方面有所提升,还应致力于提高计算效率。
4. 未来展望与影响
4.1 未来模型的表现
- 发展潜力巨大:尽管当前 LLM 在 HLE 上的表现不佳,但 AI 发展迅速,模型很可能在 2025 年底之前在 HLE 上达到超过 50% 的准确率。
- 局限性:HLE 主要测试结构化的学术问题,而非开放式的科研或创造性问题,因此它只是衡量 AI 技术知识和推理能力的一个指标,而非衡量“人工通用智能”(AGI)的标准。
4.2 对 AI 发展的影响
- 提供共同参考点:HLE 为科学家和政策制定者提供了一个评估 AI 能力的共同参考点,有助于更深入地了解 AI 的发展轨迹、潜在风险以及必要的治理措施。
- 促进 AI 发展:HLE 的发布将激励研究人员开发更强大的 AI 模型,推动 AI 技术的不断进步。
5. 总结
HLE 代表着 AI 基准测试的一个重要里程碑,它:
- 挑战 AI 极限:通过设计极具挑战性的问题,HLE 有效评估了 AI 在人类知识前沿领域的能力。
- 推动 AI 发展:HLE 的发布将推动 AI 研究人员不断突破现有技术的瓶颈,推动 AI 技术的进一步发展。
- 促进 AI 治理:HLE 为 AI 治理提供了重要的参考依据,有助于制定更有效的 AI 政策。

图 2:HLE 提交的部分多样且具有挑战性的问题示例

图 4:HLE 数据集创建流程。接受 LLM 无法解决的问题,然后借助专家同行评审员进行迭代完善。每个问题随后由组织者或由组织者培训的专家评审员手动批准。除了公共集之外,还保留了一个私有保留集,以评估模型在公共基准测试上的过度拟合和作弊行为。

图 5:测试的推理模型的平均完成标记计数,包括推理和输出标记。我们还在附录 C.3 中绘制了非推理模型的平均标记计数。
6. 结论
HLE 为 AI 领域提供了一个全新的、极具挑战性的评估平台,将有助于推动 AI 技术的持续进步,并为 AI 治理提供重要的参考依据。
相关文章:
HUMANITY’S LAST EXAM (HLE) 综述:人工智能领域的“最终考试”
论文地址:Humanity’s Last Exam 1. 背景与动机 随着大型语言模型(LLMs)能力的飞速发展,其在数学、编程、生物等领域的任务表现已超越人类。为了系统地衡量这些能力,LLMs 需要接受基准测试(Benchmarks&…...
C++从入门到实战(二)C++命名空间
C从入门到实战(二)C命名空间 前言一、C的第一个程序二、命名空间(一)为什么需要命名空间(二)定义命名空间(三)使用命名空间1.通过命名空间限定符:2.使用 using 声明&…...
C# OpenCV机器视觉:实现农作物病害检测
在酷热难耐的夏日,阳光似火舌般舔舐大地。阿强惬意地躺在老家院子摇椅上,哼着小曲,手边放着一碗冰镇西瓜,头顶大槐树宛如巨大遮阳伞,洒下斑驳阴凉。他本想趁假期回老家放松,远离城市喧嚣与代码 “纠缠”。 …...
开源软件协议介绍
一、可以闭源使用/不具传染性的协议 允许商业使用和分发 1、BSD:详细介绍 2、LGPL许可证:详细介绍 3、MPL2.0:详细介绍 二、具有传染性/使用后需要开源自身软件的协议 不建议商业使用 1、GPL许可证:详细介绍...
CLion开发Qt桌面
IDE:CLion Qt Qt版本:5.12 学习正点原子的嵌入式Linux开发板时,使用Qt Creator写代码不是很方便,遂尝试使用CLion搭建Qt开发环境。 一、CLion的Qt环境搭建 1,配置工具链 找到Qt的安装目录,此处为E:\Tools\…...
09_异步加载_单例模式_常量类配置_不可销毁
1.首先在 资源加载服务层ResSvc.cs中添加 自定义异步加载函数 using UnityEngine; using UnityEngine.SceneManagement; //异步加载 命名空间 //功能 : 资源加载服务 public class ResSvc : MonoBehaviour{public void InitSvc(){Debug.Log("Init ResSvc...");}//自定…...
士的宁(strychnine)的生物合成-文献精读104
Biosynthesis of strychnine 士的宁(strychnine) 又名 番木鳖碱 的生物合成 摘要 士的宁(番木鳖碱)是一种天然产物,通过分离、结构阐明和合成努力,塑造了有机化学领域。目前,士的宁因其强大的…...
【开源免费】基于Vue和SpringBoot的常规应急物资管理系统(附论文)
本文项目编号 T 159 ,文末自助获取源码 \color{red}{T159,文末自助获取源码} T159,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...
(Java版本)基于JAVA的网络通讯系统设计与实现-毕业设计
源码 论文 下载地址: cc基于JAVA的网络通讯系统设计与实现(源码系统论文)https://download.csdn.net/download/weixin_39682092/90299782https://download.csdn.net/download/weixin_39682092/90299782 第1章 绪论 1.1 课题选择的…...
ray.rllib 入门实践-2:配置算法
前言: ray.rllib的算法配置方式有多种,网上的不同教程各不相同,有的互不兼容,本文汇总罗列了多种算法配置方式,给出推荐,并在最后给出可运行代码。 四种配置方式 方法1 import os from ray.rllib.algori…...
2025-01学习笔记
1.SpEL 第一次知道它的全称 Spring Expression Language(SpEL) Value("${my.property}") private String myProperty; Value("#{2 * 3}") private int computedValue; 2.逃逸分析 逃逸分析:当一个对象在方法中被定…...
多线程执行大批量数据查询
// 创建一个固定大小的线程池ExecutorService executorService Executors.newFixedThreadPool(5);// 创建多个查询任务List<Callable<List<ShopCompareBase>>> tasks new ArrayList<>();//查询门店 切割,分成十份List<List<String>> sho…...
ChatGPT高效处理图片技巧使用详解
ChatGPT,作为OpenAI开发的预训练语言模型,主要用于生成自然语言文本的任务。然而,通过一些技巧和策略,我们可以将ChatGPT与图像处理模型结合,实现一定程度上的图像优化和处理。本文将详细介绍如何使用ChatGPT高效处理图…...
leetcode——相交链表(java)
给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节点 c1 开始相交: 题目数据 保证 整个链式结构中不存在环。 注意,函数返回结果后&…...
RubyFPV开源代码之系统简介
RubyFPV开源代码之系统简介 1. 源由2. 工程架构3. 特性介绍(软件)3.1 特性亮点3.2 数字优势3.3 使用功能 4. DEMO推荐(硬件)4.1 天空端4.2 地面端4.3 按键硬件Raspberry PiRadxa 3W/E/C 5. 软件设计6. 参考资料 1. 源由 RubyFPV以…...
麦田物语学习笔记:创建TransitionManager控制人物场景切换
基本流程 制作场景之间的切换 1.代码思路 (1)为了实现不同场景切换,并且保持当前的persistentScene一直存在,则需要一个Manager去控制场景的加载和卸载,并且在加载每一个场景之后,都要将当前的场景Set Active Scene,保证其为激活的场景,在卸载的时候也可以方便调用当前激活的场…...
后端SpringBoot学习项目-用户管理-增删改查-service层
仓库地址 在初版代码中,已经实现了基础的增删改查。 但是,逻辑处理都放在Controller层中并没有分为Service层,所以,代码升级时候必须补充上去。 代码结构 升级后的代码结构有所变化。 --common 公共插件 --controller…...
机器学习11-学习路径推荐
机器学习11-学习路径推荐 本文希望摒除AI学习商业宣传要素,推荐一条极简的AI学习路线!推荐内容均为在线免费内容,如果有条件可以咨询专业的培训机构! 文章目录 机器学习11-学习路径推荐[toc] 1-AI培训路线第一阶段 Python-人工智能…...
[ACTF2020 新生赛]Upload1
题目 以为是前端验证,试了一下PHP传不上去 可以创建一个1.phtml文件。对.phtml文件的解释: 是一个嵌入了PHP脚本的html页面。将以下代码写入该文件中 <script languagephp>eval($_POST[md]);</script><script languagephp>system(cat /flag);&l…...
【PyTorch】0.初识:从吃货角度理解张量
0.初识张量 PyTorch 是一个 Python 深度学习框架,它将数据封装成张量(Tensor)来进行运算。PyTorch 中的张量就是元素为同一种数据类型的多维矩阵。在 PyTorch 中,张量以 "类" 的形式封装起来,对张量的一些运…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践
01技术背景与业务挑战 某短视频点播企业深耕国内用户市场,但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大,传统架构已较难满足当前企业发展的需求,企业面临着三重挑战: ① 业务:国内用户访问海外服…...
