第38周:猫狗识别 (Tensorflow实战第八周)
目录
前言
一、前期工作
1.1 设置GPU
1.2 导入数据
输出
二、数据预处理
2.1 加载数据
2.2 再次检查数据
2.3 配置数据集
2.4 可视化数据
三、构建VGG-16网络
3.1 VGG-16网络介绍
3.2 搭建VGG-16模型
四、编译
五、训练模型
六、模型评估
七、预测
总结
前言
🍨 本文为中的学习记录博客🍖 原作者:
说在前面
1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视化进度条;
2)运行环境:Python3.6、Pycharm2020、tensorflow2.4.0
一、前期工作
1.1 设置GPU
代码如下:
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # 忽略 Error
#隐藏警告
import warnings
warnings.filterwarnings('ignore')
# 1.1 设置GPU
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")
# 打印显卡信息,确认GPU可用
print(gpus)
输出:[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
⚠️⚠️⚠️前期我没有使用GPU就采用的CPU训练速度很慢,虽然安装了tensorflow-gpu但还是用的CPU因为我的cudnn和cudatoolkit之前没配置成功,然后我补充安装。这里出线会打印很多关于gpu调用的日志信息,会很影响我们对训练过程和打印信息的关注度,这里我在import tensorflow之前先通过下面的设置来控制打印的内容
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
os.environ["TF_CPP_MIN_LOG_LEVEL"]='3'
TF_CPP_MIN_LOG_LEVEL 取值 0 : 0也是默认值,输出所有信息
TF_CPP_MIN_LOG_LEVEL 取值 1 : 屏蔽通知信息
TF_CPP_MIN_LOG_LEVEL 取值 2 : 屏蔽通知信息和警告信息
TF_CPP_MIN_LOG_LEVEL 取值 3 : 屏蔽通知信息、警告信息和报错信息
参考自:https://blog.csdn.net/xiaoqiaoliushuiCC/article/details/124435241
1.2 导入数据
代码如下:
# 1.2 导入数据
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
import os,PIL,pathlib
data_dir = "./data"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)
输出
图片总数为: 3400
二、数据预处理
2.1 加载数据
使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset,tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型
测试集与验证集的关系:
- 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
- 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
- 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
代码如下:
# 二、数据预处理
# 2.1 加载数据
batch_size = 8
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)
输出如下:
['cat', 'dog']
2.2 再次检查数据
代码如下:
# 2.2 再次检查数据
for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
输出:
(8, 224, 224, 3)
(8,)
2.3 配置数据集
代码如下:
# 2.3 配置数据集
AUTOTUNE = tf.data.AUTOTUNEdef preprocess_image(image,label):return (image/255.0,label)
# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
2.4 可视化数据
代码如下:
plt.figure(figsize=(15, 10)) # 图形的宽为15高为10
for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(5, 8, i + 1)plt.imshow(images[i])plt.title(class_names[labels[i]])plt.axis("off")
输出:
三、构建VGG-16网络
3.1 VGG-16网络介绍
结构说明:
- 13个卷积层(Convolutional Layer),分别用
blockX_convX表示 - 3个全连接层(Fully connected Layer),分别用
fcX与predictions表示 - 5个池化层(Pool layer),分别用
blockX_pool表示
网络结构图如下(包含了16个隐藏层--13个卷积层和3个全连接层,故称为VGG-16)
3.2 搭建VGG-16模型
代码如下:
# 三、构建VGG-16网络
from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropoutdef VGG16(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)# 2nd blockx = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)# 3rd blockx = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)# 4th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)# 5th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)# full connectionx = Flatten()(x)x = Dense(4096, activation='relu', name='fc1')(x)x = Dense(4096, activation='relu', name='fc2')(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=VGG16(1000, (img_width, img_height, 3))
model.summary()
模型结构打印如下:
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 224, 224, 3)] 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 25088) 0
_________________________________________________________________
fc1 (Dense) (None, 4096) 102764544
_________________________________________________________________
fc2 (Dense) (None, 4096) 16781312
_________________________________________________________________
predictions (Dense) (None, 1000) 4097000
=================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
四、编译
代码如下:
model.compile(optimizer="adam",loss='sparse_categorical_crossentropy',metrics=['accuracy'])
五、训练模型
代码如下:
# 五、训练模型
from tqdm import tqdm
import tensorflow.keras.backend as Kepochs = 10
lr = 1e-4# 记录训练数据,方便后面的分析
history_train_loss = []
history_train_accuracy = []
history_val_loss = []
history_val_accuracy = []
for epoch in range(epochs):train_total = len(train_ds)val_total = len(val_ds)with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}', mininterval=1, ncols=100) as pbar:lr = lr * 0.92K.set_value(model.optimizer.lr, lr)for image, label in train_ds:history = model.train_on_batch(image, label)train_loss = history[0]train_accuracy = history[1]pbar.set_postfix({"loss": "%.4f" % train_loss,"accuracy": "%.4f" % train_accuracy,"lr": K.get_value(model.optimizer.lr)})pbar.update(1)history_train_loss.append(train_loss)history_train_accuracy.append(train_accuracy)print('开始验证!')with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}', mininterval=0.3, ncols=100) as pbar:for image, label in val_ds:history = model.test_on_batch(image, label)val_loss = history[0]val_accuracy = history[1]pbar.set_postfix({"loss": "%.4f" % val_loss,"accuracy": "%.4f" % val_accuracy})pbar.update(1)history_val_loss.append(val_loss)history_val_accuracy.append(val_accuracy)print('结束验证!')print("验证loss为:%.4f" % val_loss)print("验证准确率为:%.4f" % val_accuracy)
打印训练过程:
六、模型评估
代码如下:
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
训练结果可视化如下:
七、预测
代码如下:
# 七、预测
import numpy as np
# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3)) # 图形的宽为18高为5
plt.suptitle("预测结果展示")
for images, labels in val_ds.take(1):for i in range(8):ax = plt.subplot(1, 8, i + 1)# 显示图片plt.imshow(images[i].numpy())# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0)# 使用模型预测图片中的人物predictions = model.predict(img_array)plt.title(class_names[np.argmax(predictions)])plt.axis("off")
输出:
1/1 [==============================] - 0s 129ms/step
1/1 [==============================] - 0s 19ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 17ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 17ms/step
1/1 [==============================] - 0s 17ms/step
总结
- Tensorflow训练过程中打印多余信息的处理,并且引入了进度条的显示方式,更加方便及时查看模型训练过程中的情况,可以及时打印各项指标
- 修改了以往的model.fit()训练方法,改用model.train_on_batch方法。两种方法的比较:
model.fit():用起来十分简单,对新手非常友好;model.train_on_batch():封装程度更低,可以玩更多花样 - 完成了VGG-16基于Tensorflow下的搭建、训练等工作,对比分析了pytorch和tensorflow两个框架下实现同种任务的异同;
- 完成VGG-16对猫狗图片的高精度识别
相关文章:
第38周:猫狗识别 (Tensorflow实战第八周)
目录 前言 一、前期工作 1.1 设置GPU 1.2 导入数据 输出 二、数据预处理 2.1 加载数据 2.2 再次检查数据 2.3 配置数据集 2.4 可视化数据 三、构建VGG-16网络 3.1 VGG-16网络介绍 3.2 搭建VGG-16模型 四、编译 五、训练模型 六、模型评估 七、预测 总结 前言…...
【2024年华为OD机试】 (A卷,200分)- 计算网络信号、信号强度(JavaScriptJava PythonC/C++)
一、问题描述 题目解析 问题描述 我们有一个 m x n 的二维网格地图,每个格子可能是以下几种情况之一: 0:表示该位置是空旷的。x(正整数):表示该位置是信号源,信号强度为 x。-1:表示该位置是阻隔物,信号无法直接穿透。信号源只有一个,阻隔物可能有多个。信号在传播…...
【go语言】数组和切片
一、数组 1.1 什么是数组 数组是一组数:数组需要是相同类型的数据的集合;数组是需要定义大小的;数组一旦定义了大小是不可以改变的。 1.2 数组的声明 数组和其他变量定义没有什么区别,唯一的就是这个是一组数,需要给…...
2025美赛MCM数学建模A题:《石头台阶的“记忆”:如何用数学揭开历史的足迹》(全网最全思路+模型)
✨个人主页欢迎您的访问 ✨期待您的三连 ✨ 《石头台阶的“记忆”:如何用数学揭开历史的足迹》 目录 《石头台阶的“记忆”:如何用数学揭开历史的足迹》 ✨摘要✨ ✨引言✨ 1. 引言的结构 2. 撰写步骤 (1)研究背景 &#…...
使用 Docker Compose 一键启动 Redis、MySQL 和 RabbitMQ
目录 一、Docker Compose 简介 二、服务配置详解 1. Redis 配置 2. MySQL 配置 3. RabbitMQ 配置 三、数据持久化与时间同步 四、部署与管理 五、总结 目录挂载与卷映射的区别 现代软件开发中,微服务架构因其灵活性和可扩展性而备受青睐。为了支持微服务的…...
新增自定义数据功能|UWA Gears V1.0.7
UWA Gears 是UWA最新发布的无SDK性能分析工具。针对移动平台,提供了实时监测和截帧分析功能,帮助您精准定位性能热点,提升应用的整体表现。 本次版本更新新增了自定义数据功能,支持灵活定义和捕获关键性能指标,满足特…...
docker 简要笔记
文章目录 一、前提内容1、docker 环境准备2、docker-compose 环境准备3、流程说明 二、打包 docker 镜像1、基础镜像2、国内镜像源3、基础的dockerfile4、打包镜像 四、构建运行1、docker 部分2、docker-compose 部分2.1、构建docker-compose.yml2.1.1、同目录构建2.1.2、利用镜…...
在Ubuntu上使用Apache+MariaDB安装部署Nextcloud并修改默认存储路径
一、前言 Nextcloud 是一款开源的私有云存储解决方案,允许用户轻松搭建自己的云服务。它不仅支持文件存储和共享,还提供了日历、联系人、任务管理、笔记等丰富的功能。本文将详细介绍如何在 Ubuntu 22.04 LTS 上使用 Apache 和 MariaDB 安装部署 Nextcl…...
【JavaEE】-- 计算机是如何工作的
文章目录 1. 冯诺依曼体系(VonNeumann Architecture)2. CPU 基本工作流程2.1 寄存器(Register)和 内存(RAM)2.2 控制单元 CU(ControlUnit)2.3 指令(Instruction) 3. 操作系统(OperatingSystem)3.1 操作系统的定位3.2 什么是进程/任务(Process…...
政安晨的AI大模型训练实践三:熟悉一下LF训练模型的WebUI
政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正! 目录 启动WebUI 微调模型 LLaMA-Factory 支持通过 WebUI 零代码微调大语言模型。 启动Web…...
基于微信小程序的网上订餐管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…...
科技快讯 | 理想官宣:正式收费!WeChat 港币钱包拓宽商户网络;百川智能发布深度思考模型Baichuan-M1-preview
理想官宣:正式收费! 1月23日,理想汽车宣布,理想超充站超时占用费正式运营。触发超时占用费的条件为充电结束后15分钟内未将充电枪插回充电桩,收费标准为2元/分钟,单次封顶200元。理想汽车将在充电结束的四个…...
【java数据结构】map和set
【java数据结构】map和set 一、Map和Set的概念以及背景1.1 概念1.2 背景1.3 模型 二、Map2.1 Map说明2.2 Map的常用方法 三、Set3.1 Set说明3.2 Set的常用方法 四、Set和Map的关系 博客最后附有整篇博客的全部代码!!! 一、Map和Set的概念以及…...
飞牛NAS安装过程中的docker源问题
采用CloudFlare进行飞牛NAS的远程访问 【安全免费】无需公网IP、端口号,NAS外网访问新方法_网络存储_什么值得买 sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<EOF {"registry-mirrors": ["https://docker.1panel.dev&quo…...
Linux(Centos 7.6)命令详解:dos2unix
1.命令安装 dos2unix 命令默认情况下是没有安装的,如配置yum源,可通过yum安装命令如下: yum install dos2unix dos2unix 有一个对立的命令unix2dos,也需要yum安装,一般使用不到这里不做过多解释,具体参数…...
Linux MySQL离线安装
一、准备工作 1. 下载MySQL安装包 访问MySQL官方网站,选择适合您Linux系统的MySQL版本进行下载。通常推荐下载Generic Linux (glibc 2.12)版本的.tar.gz压缩包,例如mysql-8.0.33-linux-glibc2.12-x86_64.tar.xz。将下载好的安装包拷贝到Linux服务器的某…...
声明,这些内容和我无关
声明,下面这些内容和我无关,不是我写的,买了我不负责答疑,也不负责其他相关。 一下内容都不是我写的,系统自己加上去的,和我无关,我不负责答疑也不负责其他。...
ISO:摄影中的光线敏感度密码
目录 一、ISO 究竟是什么 二、ISO 与光线的关系 (一)低 ISO 在充足光线下的表现 (二)高 ISO 在光线不足时的作用 三、ISO 对画质的影响 (一)低 ISO 带来的优质画质 (二)高 IS…...
长短期记忆网络LSTM
视频链接 1.LSTM与RNN的区别 RNN想把所有信息都记住,不管是有用的信息还是没用的信息,并且有梯度爆炸或者梯度消失的问题 而LSTM设计了一个记忆细胞,具备选择记忆功能,可以选择记忆重要信息,过滤掉噪声信息࿰…...
2. 握手问题python解法——2024年省赛蓝桥杯真题
原题传送门:1.握手问题 - 蓝桥云课 问题描述 小蓝组织了一场算法交流会议,总共有 50人参加了本次会议。在会议上,大家进行了握手交流。按照惯例他们每个人都要与除自己以外的其他所有人进行一次握手 (且仅有一次)。但有 7 个人,…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...




