当前位置: 首页 > news >正文

自然语言处理(NLP)入门:基础概念与应用场景

什么是自然语言处理(NLP)?

自然语言处理(Natural Language Processing, NLP)是人工智能(AI)的一个重要分支,研究如何让计算机理解、生成、分析和与人类语言进行交互。换句话说,NLP 是让机器像人一样“读、写、听、说”的技术,它结合了语言学、机器学习、计算机科学等多学科知识。

NLP 的核心目标是将非结构化的自然语言(如文本和语音)转化为结构化数据,使机器能够高效处理、分析和生成语言信息。


1. NLP 的基础概念

要掌握 NLP,需要理解以下核心概念和技术:

(1)语言学基础
  • 词法分析(Lexical Analysis):将句子拆分为单词或词组(即分词)。
    • 例子:将“自然语言处理很重要”分解为“自然语言处理 / 很 / 重要”。
  • 句法分析(Syntactic Analysis):研究句子的语法结构。
    • 例子:分析“我喜欢苹果”的主语、谓语和宾语。
  • 语义分析(Semantic Analysis):理解句子的含义或意图。
    • 例子:理解“苹果”是指水果还是苹果公司。
(2)词嵌入(Word Embedding)
  • 概念:将单词转换为数学向量,使计算机能够理解单词之间的语义关系。
    • 模型代表:Word2Vec、GloVe、FastText。
    • 例子:在词向量空间中,“国王 - 男人 + 女人 ≈ 女王”。
(3)语言模型(Language Model)
  • 概念:预测句子中的下一个单词,或生成句子。
    • 早期模型:基于统计的 n-gram。
    • 现代模型:基于深度学习的 Transformer 模型,如 BERT 和 GPT。
    • 例子:输入“我今天很”,模型预测“高兴”或“忙”。
(4)语境理解(Contextual Understanding)
  • 问题:语言的含义依赖于上下文。
    • 例子:句子“苹果很好吃”和“苹果市值创新高”,需要结合上下文判断“苹果”的含义。
  • 技术突破:BERT 等上下文相关语言模型能够处理这种歧义。

2. NLP 的核心技术

(1)文本处理技术
  • 分词、去停用词、词性标注。
  • 正则表达式清洗数据。
  • 文本向量化:TF-IDF、词袋模型(BoW)。
(2)语言生成与理解
  • 自然语言生成(NLG):机器生成自然语言文本。
    • 例子:ChatGPT 根据输入生成回答。
  • 自然语言理解(NLU):机器理解文本的语义。
    • 例子:从用户输入“今天要带伞吗?”中提取意图为“查询天气”。
(3)深度学习在 NLP 中的应用
  • RNN、LSTM、GRU:适合处理序列数据。
  • Transformer:当前主流模型,支持并行处理长文本。
    • 代表模型:BERT、GPT、T5 等。

3. NLP 的应用场景

(1)文本处理与分析
  • 文本分类
    • 将文本分为不同类别。
    • 例子:垃圾邮件过滤、新闻分类。
  • 情感分析
    • 分析文本的情绪倾向。
    • 例子:社交媒体上对品牌的评价分析。
  • 关键词提取
    • 从文本中提取出最重要的词语。
    • 例子:SEO 优化。
(2)机器翻译
  • 将一种语言的文本翻译成另一种语言。
    • 早期方法:基于规则的翻译。
    • 现代方法:神经机器翻译(NMT)。
    • 例子:Google 翻译、DeepL。
(3)智能问答系统
  • 根据用户提出的问题自动生成答案。
    • 例子:智能客服、知识问答系统。
    • 技术支持:检索式问答、生成式问答。
(4)语音助手
  • 将语音转换为文本,理解用户的意图并生成语音回答。
    • 例子:Siri、Alexa、Google Assistant。
    • 技术支持:ASR(语音识别)、TTS(语音合成)。
(5)文本生成
  • 自动生成文章、摘要、代码等。
    • 例子:新闻生成、代码补全。
    • 代表技术:OpenAI 的 GPT 系列。
(6)医疗 NLP
  • 分析医学文献、病历数据或患者对话。
    • 例子:生成诊断建议,提取病症关键词。
(7)信息检索
  • 根据用户查询返回相关信息。
    • 例子:搜索引擎、推荐系统。
(8)多模态 NLP
  • 将文本与其他模态(如图像、语音)结合。
    • 例子:图像描述生成,语音驱动的问答系统。

4. NLP 技术的挑战

虽然 NLP 已取得长足进步,但仍面临以下挑战:

  1. 歧义性:语言中存在大量的多义词和模糊表达。
    • 例子:一句“她看到了河岸边的银行”,“银行”可以指金融机构,也可以指河边。
  2. 跨语言适配:不同语言的语法和表达方式差异大。
  3. 模型偏见:训练数据中的偏见可能会影响模型结果。
  4. 长文本理解:现有模型在处理超长文本时效率有限。

5. NLP 的未来发展方向

  1. 大规模预训练模型
    • 继续提升 BERT、GPT 等模型的性能。
  2. 多模态融合
    • 融合文本、图像、视频和语音,提升任务多样性。
  3. 低资源语言支持
    • 为小语种开发高效 NLP 模型。
  4. 实时性与可解释性
    • 提高模型的响应速度和决策透明度。

下面我着重讲一下文本处理。

1. 文本处理的整体流程

文本处理通常分为以下几个步骤:

  1. 文本清理与预处理
  2. 特征提取与向量化
  3. 数据增强与优化

每个步骤都有具体的任务和技术支撑,我们将逐一展开。


2. 文本清理与预处理

(1)分词
  • 什么是分词?
    将句子分解为一个个单词或词组的过程。
  • 为什么重要?
    机器无法直接理解整段文字,分词是文本转化为结构化数据的第一步。
  • 常见方法:
    • 基于规则:利用语言学规则(如空格、标点)进行分词。
      • 适用于英文等以空格为分词边界的语言。
      • 示例:"I love NLP"["I", "love", "NLP"]
    • 基于词典:使用词典查找匹配的词语。
      • 适用于中文等无空格分隔的语言。
      • 示例:"我喜欢自然语言处理"["我", "喜欢", "自然语言处理"]
    • 基于模型:使用统计或深度学习模型(如 HMM、CRF)进行分词,效果更好。
      • 工具:Jieba、spaCy、NLTK。

(2)去停用词
  • 什么是停用词?
    在文本中频率高但不具有实际意义的词,如“的”、“是”、“and”。
  • 为什么要去停用词?
    停用词会增加计算负担,且对任务结果的贡献较小。
  • 实现方法:
    • 准备一份停用词表(Stop Words List)。
    • 逐词对照,去除匹配的停用词。
  • 示例:
    • 输入:["I", "love", "the", "field", "of", "NLP"]
    • 输出:["love", "field", "NLP"]

(3)文本归一化
  • 目标:将文本标准化,减少同义但形式不同的内容对模型的干扰。
  • 常见操作:
    • 小写化:将所有文本转换为小写。
      • 示例:"Hello NLP""hello nlp"
    • 去除特殊符号:删除标点、表情符号等。
      • 示例:"NLP is great!!!""NLP is great"
    • 拼写纠正:纠正文本中的拼写错误。
      • 示例:"Natuarl Language Processing""Natural Language Processing"

(4)词干提取与词形还原
  • 词干提取(Stemming)
    • 将单词还原为其词干形式,去掉词缀。
    • 示例:"running", "runner""run"
    • 工具:Porter Stemmer、NLTK。
  • 词形还原(Lemmatization)
    • 将单词还原为其词典中的原型。
    • 示例:"better""good"
    • 工具:spaCy、WordNet。

3. 特征提取与向量化

文本本质上是非结构化数据,无法直接输入机器学习模型,因此需要将其转化为数值特征。

(1)词袋模型(Bag of Words, BoW)
  • 概念:将文本中的单词视为一个“词袋”,统计每个单词的出现次数。
  • 特点
    • 简单易用,适合小型数据集。
    • 无法捕捉单词的顺序和上下文关系。
  • 示例
    • 文本:"I love NLP""NLP is fun"
    • 词袋:["I", "love", "NLP", "is", "fun"]
    • 特征向量:[1, 1, 1, 0, 0], [0, 0, 1, 1, 1]

(2)TF-IDF(Term Frequency-Inverse Document Frequency)
  • 概念:衡量单词在一篇文档中的重要性。
  • 公式
    • TF:某单词在文档中出现的频率。
    • IDF:某单词在所有文档中出现的稀有程度。
    • TF-IDF = TF × IDF。
  • 优点
    • 能减少高频但无意义的词(如“的”、“是”)的影响。
  • 示例
    • 文本:"I love NLP""NLP is fun"
    • 特征向量:根据单词权重计算生成的数值表示。

(3)词嵌入(Word Embedding)
  • 概念:通过神经网络将单词表示为低维向量,捕捉单词之间的语义关系。
  • 模型
    • Word2Vec:基于上下文预测单词或单词对上下文。
    • GloVe:通过统计词频信息生成向量。
    • FastText:捕捉单词的字符级特征。
  • 优点:能捕捉单词的语义相似性和上下文关系。
    • 示例:"king""queen" 的语义距离比 "king""apple" 更近。

4. 数据增强与优化

为了提升模型的泛化能力,可以对文本进行数据增强。

(1)同义词替换
  • 用同义词替换句子中的某些单词。
    • 示例:"I like NLP""I enjoy NLP"
(2)随机删除
  • 随机删除句子中的某些单词。
    • 示例:"NLP is amazing""NLP amazing"
(3)随机插入
  • 在句子中随机插入额外的单词。
    • 示例:"NLP is great""NLP really is great"
(4)翻译增强
  • 将文本翻译成另一种语言再翻译回来。
    • 示例:"I love NLP" → 法语 → "I adore NLP"

5. 文本处理工具

以下工具库可以帮助高效完成文本处理任务:

  • NLTK:经典的 NLP 工具,支持分词、词性标注等基础任务。
  • spaCy:快速、易用的现代 NLP 库,支持词形还原和依存解析。
  • Hugging Face:预训练模型库,适合快速实现复杂 NLP 应用。

总结

自然语言处理作为 AI 的核心技术之一,正在深刻影响我们的生活。从文本分析到机器翻译,从语音助手到智能问答系统,NLP 正让机器更懂“人类语言”。未来,随着技术的进步,NLP 将进一步推动人机交互的自然化和智能化。

💡 讨论互动:你对 NLP 最感兴趣的应用场景是什么?欢迎留言讨论!

相关文章:

自然语言处理(NLP)入门:基础概念与应用场景

什么是自然语言处理(NLP)? 自然语言处理(Natural Language Processing, NLP)是人工智能(AI)的一个重要分支,研究如何让计算机理解、生成、分析和与人类语言进行交互。换句话说&…...

AI News(1/21/2025):OpenAI 安全疏忽:ChatGPT漏洞引发DDoS风险/OpenAI 代理工具即将发布

1、OpenAI 的安全疏忽:ChatGPT API 漏洞引发DDoS风险 德国安全研究员 Benjamin Flesch 发现了一个严重的安全漏洞:攻击者可以通过向 ChatGPT API 发送一个 HTTP 请求,利用 ChatGPT 的爬虫对目标网站发起 DDoS 攻击。该漏洞源于 OpenAI 在处理…...

Linux——包源管理工具

一、概要 Linux下的包/源管理命令:主要任务就是完成在Linux环境下的安装/卸载/维护软件。 1.rpm 是最基础的rpm包的安装命令,需要提前下载相关安装包和依赖包。 2.yum/dnf (最好用)是基于rpm包的自动安装命令,可以自动…...

C++解决走迷宫问题:DFS、BFS算法应用

文章目录 思路:DFSBFSBFS和DFS的特点BFS 与 DFS 的区别BFS 的优点BFS 时间复杂度深度优先搜索(DFS)的优点深度优先搜索(DFS)的时间复杂度解释:空间复杂度总结:例如下面的迷宫: // 迷宫的表示:0表示可以走,1表示障碍 vector<vector<int>> maze = {{0, 0,…...

机器学习09-Pytorch功能拆解

机器学习09-Pytorch功能拆解 我个人是Java程序员&#xff0c;关于Python代码的使用过程中的相关代码事项&#xff0c;在此进行记录 文章目录 机器学习09-Pytorch功能拆解1-核心逻辑脉络2-个人备注3-Pytorch软件包拆解1-Python有参和无参构造构造方法的基本语法示例解释注意事项…...

BLE透传方案,IoT短距无线通信的“中坚力量”

在物联网&#xff08;IoT&#xff09;短距无线通信生态系统中&#xff0c;低功耗蓝牙&#xff08;BLE&#xff09;数据透传是一种无需任何网络或基础设施即可完成双向通信的技术。其主要通过简单操作串口的方式进行无线数据传输&#xff0c;最高能满足2Mbps的数据传输速率&…...

Linux 中的poll、select和epoll有什么区别?

poll 和 select 是Linux 系统中用于多路复用 I/O 的系统调用&#xff0c;它们允许一个程序同时监视多个文件描述符&#xff0c;以便在任何一个文件描述符准备好进行 I/O 操作时得到通知。 一、select select 是一种较早的 I/O 多路复用机制&#xff0c;具有以下特点&#xff…...

单片机-STM32 WIFI模块--ESP8266 (十二)

1.WIFI模块--ESP8266 名字由来&#xff1a; Wi-Fi这个术语被人们普遍误以为是指无线保真&#xff08;Wireless Fidelity&#xff09;&#xff0c;并且即便是Wi-Fi联盟本身也经常在新闻稿和文件中使用“Wireless Fidelity”这个词&#xff0c;Wi-Fi还出现在ITAA的一个论文中。…...

linux日志排查相关命令

实时查看日志 tail -f -n 100 文件名 -f:实时查看 -n:查看多少行 直接查看日志文件 .log文件 cat 文件名 .gz文件 zgcat 文件名 在日志文件搜索指定内容 .log文件 grep -A 3 “呀1” 文件名 -A&#xff1a;向后查看 3&#xff1a;向后查看行数 “呀1”&#xff1a;搜…...

每日一题-二叉搜索树与双向链表

将二叉搜索树转化为排序双向链表 问题描述 输入一棵二叉搜索树&#xff0c;将该二叉搜索树转换成一个排序的双向链表&#xff0c;要求空间复杂度为 O(1)&#xff0c;时间复杂度为 O(n)&#xff0c;并且不能创建新的结点&#xff0c;只能调整树中结点的指针指向。 数据范围 …...

【多视图学习】Self-Weighted Contrastive Fusion for Deep Multi-View Clustering

Self-Weighted Contrastive Fusion for Deep Multi-View Clustering 用于深度多视图聚类的自加权对比融合 TMM 2024 代码链接 论文链接 0.摘要 多视图聚类可以从多个视图中探索共识信息&#xff0c;在过去二十年中越来越受到关注。然而&#xff0c;现有的工作面临两个主要挑…...

ASK-HAR:多尺度特征提取的深度学习模型

一、探索多尺度特征提取方法 在近年来&#xff0c;随着智能家居智能系统和传感技术的快速发展&#xff0c;人类活动识别&#xff08;HAR&#xff09;技术已经成为一个备受瞩目的研究领域。HAR技术的核心在于通过各种跟踪设备和测量手段&#xff0c;如传感器和摄像头&#xff0…...

C语言:数据的存储

本文重点&#xff1a; 1. 数据类型详细介绍 2. 整形在内存中的存储&#xff1a;原码、反码、补码 3. 大小端字节序介绍及判断 4. 浮点型在内存中的存储解析 数据类型结构的介绍&#xff1a; 类型的基本归类&#xff1a; 整型家族 浮点家族 构造类型&#xff1a; 指针类型&…...

深入理解动态规划(dp)--(提前要对dfs有了解)

前言&#xff1a;对于动态规划&#xff1a;该算法思维是在dfs基础上演化发展来的&#xff0c;所以我不想讲的是看到一个题怎样直接用动态规划来解决&#xff0c;而是说先用dfs搜索&#xff0c;一步步优化&#xff0c;这个过程叫做动态规划。&#xff08;该文章教你怎样一步步的…...

单片机基础模块学习——数码管(二)

一、数码管模块代码 这部分包括将数码管想要显示的字符转换成对应段码的函数&#xff0c;另外还包括数码管显示函数 值得注意的是对于小数点和不显示部分的处理方式 由于小数点没有单独占一位&#xff0c;所以这里用到了两个变量i,j用于跳过小数点导致的占据其他字符显示在数…...

【大数据】机器学习----------强化学习机器学习阶段尾声

一、强化学习的基本概念 注&#xff1a; 圈图与折线图引用知乎博主斜杠青年 1. 任务与奖赏 任务&#xff1a;强化学习的目标是让智能体&#xff08;agent&#xff09;在一个环境&#xff08;environment&#xff09;中采取一系列行动&#xff08;actions&#xff09;以完成一个…...

flink写parquet解决timestamp时间格式字段问题

背景 Apache Parquet 是一种开源的列式数据文件格式,旨在实现高效的数据存储和检索。它提供高性能压缩和编码方案(encoding schemes)来批量处理复杂数据,并且受到许多编程语言和分析工具的支持。 在我们通过flink写入parquet文件的时候,会遇到timestamp时间格式写入的问题。…...

redis实现lamp架构缓存

redis服务器环境下mysql实现lamp架构缓存 ip角色环境192.168.242.49缓存服务器Redis2.2.7192.168.242.50mysql服务器mysql192.168.242.51web端php ***默认已安装好redis&#xff0c;mysql 三台服务器时间同步&#xff08;非常重要&#xff09; # 下载ntpdate yum -y install…...

正则表达式中常见的贪婪词

1. * 含义&#xff1a;匹配前面的元素零次或者多次。示例&#xff1a;对于正则表达式 a*&#xff0c;在字符串 "aaaa" 中&#xff0c;它会匹配整个 "aaaa"&#xff0c;因为它会尽可能多地匹配 a 字符。代码示例&#xff08;Python&#xff09;&#xff1a…...

CF 339A.Helpful Maths(Java实现)

题目分析 输入一串式子&#xff0c;输出从小到大排列的式子 思路分析 如上所说核心思路&#xff0c;但是我要使用笨方法&#xff0c;输入一串式子用split分割开&#xff0c;但是此时需要用到转义字符&#xff0c;即函数内参数不能直接使用“”&#xff0c;而是“\\”。分割开后…...

SQL 指南

SQL 指南 引言 SQL(Structured Query Language,结构化查询语言)是一种用于管理关系数据库系统的标准计算机语言。自1970年代问世以来,SQL已经成为了数据库管理和数据操作的事实标准。本文旨在为初学者和有经验的数据库用户提供一个全面的SQL指南,涵盖SQL的基础知识、高级…...

DDD架构实战第七讲总结:分层模型和代码组织

云架构师系列课程之DDD架构实战第七讲总结:分层模型和代码组织 一、引言 在前几讲中,我们介绍了领域驱动设计(DDD)的基本构造块和生命周期模型中的聚合。本讲将重点讨论如何将这些构造块和代码组织起来,探讨分层架构和六边形模型,以及如何组织代码结构。 二、工厂和资…...

Python “字典” 实战案例:5个项目开发实例

Python “字典” 实战案例&#xff1a;5个项目开发实例 内容摘要 本文包括 5 个使用 Python 字典的综合应用实例。具体是&#xff1a; 电影推荐系统配置文件解析器选票统计与排序电话黄页管理系统缓存系统&#xff08;LRU 缓存&#xff09; 以上每一个实例均有完整的程序代…...

(一)QT的简介与环境配置WIN11

目录 一、QT的概述 二、QT的下载 三、简单编程 常用快捷键 一、QT的概述 简介 Qt&#xff08;发音&#xff1a;[kjuːt]&#xff0c;类似“cute”&#xff09;是一个跨平台的开发库&#xff0c;主要用于开发图形用户界面&#xff08;GUI&#xff09;应用程序&#xff0c;…...

在 Windows 系统上,将 Ubuntu 从 C 盘 迁移到 D 盘

在 Windows 系统上&#xff0c;如果你使用的是 WSL&#xff08;Windows Subsystem for Linux&#xff09;并安装了 Ubuntu&#xff0c;你可以将 Ubuntu 从 C 盘 迁移到 D 盘。迁移过程涉及导出当前的 Ubuntu 发行版&#xff0c;然后将其导入到 D 盘的目标目录。以下是详细的步骤…...

vue2的$el.querySelector在vue3中怎么写

这个也属于直接操作 dom 了&#xff0c;不建议在项目中这样操作&#xff0c;不过我是在vue2升级vue3的时候遇到的&#xff0c;是以前同事写的代码&#xff0c;也没办法 先来看一下对比 在vue2中获取实例是直接通过 this.$refs.xxx 获取绑定属性 refxxx 的实例&#xff0c;并且…...

GPSd定时检测保活TCP GPS源

为了在 TCP GPS 源丢失连接时自动重新连接&#xff0c;可以编写一个监控脚本&#xff0c;定期检查 gpspipe 输出中的 TCP 源数据是否存在。如果检测到丢失&#xff0c;则使用 gpsdctl 或直接命令重新添加 TCP 源。 1、工具 检查并安装必要工具&#xff0c;本例需要使用 gpspi…...

IDEA中Maven使用的踩坑与最佳实践

文章目录 IDEA中Maven使用的踩坑与最佳实践一、环境配置类问题1. Maven环境配置2. IDEA中Maven配置建议 二、常见问题与解决方案1. 依赖下载失败2. 依赖冲突解决3. 编译问题修复 三、效率提升技巧1. IDEA Maven Helper插件使用2. 常用Maven命令配置3. 多模块项目配置4. 资源文件…...

使用 Python 调用 OpenAI 的接口初识

使用 Python 调用 OpenAI 的接口非常简单&#xff0c;以下将结合实际代码示例和使用场景进行详细讲解&#xff0c;步骤如下&#xff1a; 文章目录 1. 安装 OpenAI 官方库2. 准备 API Key3. 基本使用示例&#xff1a;调用 ChatGPT**代码示例&#xff1a;****运行结果&#xff1a…...

2025 最新flutter面试总结

目录 1.Dart是值传递还是引用传递&#xff1f; 2.Flutter 是单引擎还是双引擎 3. StatelessWidget 和 StatefulWidget 在 Flutter 中有什么区别&#xff1f; 4.简述Dart语音特性 5. Navigator 是什么&#xff1f;在 Flutter 中 Routes 是什么&#xff1f; 6、Dart 是不是…...