CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测(Matlab完整源码和数据)
CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测(Matlab完整源码和数据)
目录
- CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测(Matlab完整源码和数据)
- 预测效果
- 基本介绍
- CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测
- 一、引言
- 1.1、研究背景和意义
- 1.2、研究现状
- 1.3、研究目的与内容
- 二、理论基础
- 2.1、时间序列预测概述
- 2.2、深度学习在时间序列预测中的应用
- 三、CNN-BiLSTM模型设计
- 3.1、模型架构详解
- 3.2、模型训练与优化
- 四、实验设计与结果分析
- 4.1、实验数据与预处理
- 4.2、实验设置
- 五、模型优化策略
- 5.1、参数优化方法
- 5.2、模型结构改进
- 六、案例分析
- 6.1、金融市场预测
- 6.2、气象预报
- 6.3、能源负荷预测
- 七、结论与展望
- 7.1、研究总结
- 7.2、研究展望
- 程序设计
- 参考资料
预测效果

基本介绍
CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测
一、引言
1.1、研究背景和意义
时间序列预测是数据分析中的一个重要领域,它涉及对一系列按时间顺序排列的数据进行建模,以预测未来的值。这种技术在金融、医疗、交通、能源等多个行业有着广泛的应用,例如股票价格预测、疾病传播趋势分析、交通流量预测和电力负荷预测等。随着数据量的不断增长和复杂性的增加,传统的统计方法如ARIMA(自回归积分滑动平均模型)和线性回归模型在处理这些数据时显得力不从心。这些方法通常假设数据是线性的且具有稳定的统计特性,而在实际情况中,时间序列数据往往具有非线性、非平稳性以及复杂的依赖关系。
1.2、研究现状
近年来,深度学习技术由于其在处理复杂数据方面的卓越表现,已经成为时间序列预测研究的热点。特别是循环神经网络(RNN),尤其是长短期记忆网络(LSTM),由于其能够有效捕捉时间序列中的长期依赖关系已被广泛应用于各种预测任务中。尽管如此,LSTM在处理长序列时仍然面临梯度消失和计算资源消耗大的问题。为了解决这些问题,研究者们提出了多种改进模型,如门控循环单元(GRU)和双向LSTM(BiLSTM)等。
1.3、研究目的与内容
本文旨在提出一种新的时间序列预测模型——CNN-BiLSTM模型,该模型结合了卷积神经网络(CNN)和双向长短期记忆网络的优势,通过利用CNN提取时间序列的局部特征和BiLSTM捕捉长期依赖关系,以提高预测的准确性。具体而言,本文将详细介绍CNN-BiLSTM模型的架构设计、训练过程,并通过实验验证其在不同领域时间序列预测中的应用效果。
二、理论基础
2.1、时间序列预测概述
时间序列预测是根据历史数据对未来数据点进行预测的统计方法。时间序列数据具有时间上的顺序性和相关性,即每个数据点都与前一个或多个数据点相关。这种相关性使得时间序列预测成为可能,但也增加了预测的复杂性。时间序列预测的主要挑战包括处理数据的非线性和非平稳性、捕捉长期依赖关系以及应对数据中的噪声和异常值。
2.2、深度学习在时间序列预测中的应用
深度学习通过多层神经网络自动提取和学习数据中的复杂特征,已在图像识别、语音识别等领域取得了显著成功。在时间序列预测中,深度学习模型如LSTM和GRU能够通过门控机制有效捕捉数据中的长期依赖关系。CNN则通过卷积操作提取数据的局部特征,特别适用于捕捉时间序列中的短期模式和周期性变化。将CNN与LSTM结合,可以同时利用两者的优势,提高预测模型的性能。
三、CNN-BiLSTM模型设计
3.1、模型架构详解
CNN-BiLSTM模型由卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)组成。模型首先使用CNN层对输入的时间序列数据进行卷积操作,提取数据的局部特征。卷积层通过多个卷积核扫描输入数据,每个卷积核负责提取特定尺度的特征,如短期波动或长期趋势。卷积操作后的特征图经过池化层(如最大池化)降维,以减少计算量和增强模型的鲁棒性。
接着,提取的特征被送入BiLSTM层进行处理。BiLSTM由两个方向的LSTM组成,一个向前处理输入序列,另一个向后处理,从而同时捕捉时间序列中的过去和未来信息。这种双向的结构使得模型能够更全面地理解数据中的依赖关系,特别适用于需要考虑上下文信息的预测任务。BiLSTM层的输出随后被送入全连接层进行非线性变换,最后通过输出层生成预测值。
3.2、模型训练与优化
模型的训练过程采用反向传播算法和Adam优化器进行。损失函数通常采用均方根误差(RMSE),以衡量预测值与实际值之间的差异。在训练过程中,为了防止过拟合,可以采用dropout正则化技术。此外,超参数的调整如学习率、批次大小、卷积核大小和数量等对模型性能有显著影响,通常通过网格搜索或随机搜索进行优化。
四、实验设计与结果分析
4.1、实验数据与预处理
为了验证CNN-BiLSTM模型的预测性能,本文选用了具有代表性的时间序列数据。数据预处理是提高模型预测性能的关键步骤,包括数据归一化和窗口划分等。
4.2、实验设置
实验模型的具体参数设置如下:卷积层包含卷积核,池化层采用最大池化;BiLSTM层;全连接层包含。优化器采用Adam,学习率,批次大小,训练轮数。
五、模型优化策略
5.1、参数优化方法
模型的性能很大程度上依赖于超参数的设置。为了找到最优的超参数组合,本文采用了网格搜索和随机搜索两种方法。网格搜索通过遍历预设的超参数组合来寻找最优解,而随机搜索则在超参数空间内随机采样,两者都能有效提高模型的预测性能。此外,使用学习率衰减策略可以在训练过程中动态调整学习率,从而加快模型的收敛速度并提高训练稳定性。
5.2、模型结构改进
为了进一步提升模型的性能,可以考虑对CNN-BiLSTM模型的结构进行改进。一种可能的改进是引入注意力机制,使得模型在处理时间序列数据时能够聚焦于重要的特征和时间步。注意力机制可以根据输入数据的重要性动态调整权重,从而提高模型对关键信息的捕捉能力。此外,可以探索将CNN-BiLSTM模型与其他深度学习模型如Transformer结合,以利用各自的优势,提高预测精度。
六、案例分析
6.1、金融市场预测
金融市场的时间序列数据通常具有高度的非线性和复杂性,包括股票价格、外汇汇率等。CNN-BiLSTM模型通过捕捉数据的短期波动和长期趋势,能够有效地预测股票价格的变动。实验结果表明,该模型在股票价格预测中表现出优异的性能,预测误差显著低于传统方法。这对于投资者来说具有重要意义,因为他们可以根据模型的预测结果做出更明智的投资决策。
6.2、气象预报
气象数据的时间序列预测对于农业、航空、能源等多个行业至关重要。CNN-BiLSTM模型通过提取气象数据中的局部特征和长期依赖关系,能够准确预测未来的温度、湿度、风速等气象要素。实验结果表明,该模型在气象预报中的应用效果显著优于传统方法,能够提供更准确和可靠的气象预测服务。
6.3、能源负荷预测
准确的能源负荷预测对于电力公司的运营和管理至关重要,可以帮助电力公司优化电力生产与分配,减少能源浪费。CNN-BiLSTM模型通过捕捉能源消耗数据中的周期性变化和趋势,能够有效预测未来的能源需求。实验结果表明,该模型在能源负荷预测中的应用效果显著优于传统方法,能够提供更准确和可靠的预测结果,从而帮助电力公司做出更明智的决策。
七、结论与展望
7.1、研究总结
本文提出了一种基于CNN-BiLSTM的时间序列预测模型,通过结合CNN和BiLSTM的优势,提高了预测的准确性。实验结果表明,该模型在金融市场、气象预报和能源负荷预测等不同领域的应用中均表现出优异的性能,显著优于传统预测方法。此外,通过参数优化和模型结构改进,进一步提升了模型的预测性能。
7.2、研究展望
尽管CNN-BiLSTM模型在时间序列预测中取得了显著成效,但仍有改进空间。未来的研究可以考虑引入更多先进的深度学习技术,如注意力机制和Transformer等,以进一步提升模型的性能。同时,探索模型在不同应用场景下的适用性和优化策略,也是未来研究的重要方向。
程序设计
- CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测(Matlab完整源码和数据)
1.Matlab实现CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测(Matlab完整源码和数据)。
2.输出MAE 、 MAPE、MSE、RMSE、R2多指标评价,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
历时 12.001924 秒。
…………训练集误差指标…………
1.均方差(MSE):13.2365
2.根均方差(RMSE):3.6382
3.平均绝对误差(MAE):1.8183
4.平均相对百分误差(MAPE):15.5692%
5.R2:94.161%
…………测试集误差指标…………
1.均方差(MSE):10.0106
2.根均方差(RMSE):3.164
3.平均绝对误差(MAE):1.6718
4.平均相对百分误差(MAPE):15.7819%
5.R2:95.2569%
%% 清空环境变量
layers0 = [ ...% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input') %输入层设置sequenceFoldingLayer('name','fold') %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([2,1],4,'Stride',[1,1],'name','conv1') %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1') % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1') % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool') % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold') %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')bilstmLayer(25,'Outputmode','last','name','hidden1') dropoutLayer(0.2,'name','dropout_1') % Dropout层,以概率为0.2丢弃输入fullyConnectedLayer(1,'name','fullconnect') % 全连接层设置(影响输出维度)(cell层出来的输出层) %regressionLayer('Name','output') ];lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ... % 优化算法Adam'MaxEpochs', 150, ... % 最大训练次数'GradientThreshold', 1, ... % 梯度阈值'InitialLearnRate', 0.01, ... % 初始学习率'LearnRateSchedule', 'piecewise', ... % 学习率调整'LearnRateDropPeriod',70, ... % 训练100次后开始调整学习率'LearnRateDropFactor',0.01, ... % 学习率调整因子'L2Regularization', 0.001, ... % 正则化参数'ExecutionEnvironment', 'cpu',... % 训练环境'Verbose', 1, ... % 关闭优化过程'Plots', 'none'); % 画出曲线
% % start training
% 训练
tic
net = trainNetwork(trainD,targetD',lgraph0,options0);
toc
%analyzeNetwork(net);% 查看网络结构
% 预测
t_sim1 = predict(net, trainD);
t_sim2 = predict(net, testD);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/127626816
[2] https://blog.csdn.net/kjm13182345320/article/details/127179100
相关文章:
CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测(Matlab完整源码和数据)
CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测(Matlab完整源码和数据) 目录 CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测(Matlab完整源码和数据)预测效果基本介绍 CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测一…...
WPF基础 | WPF 布局系统深度剖析:从 Grid 到 StackPanel
WPF基础 | WPF 布局系统深度剖析:从 Grid 到 StackPanel 一、前言二、Grid 布局:万能的布局王者2.1 Grid 布局基础:构建网格世界2.2 子元素定位与跨行列:布局的精细操控2.3 自适应布局:灵活应变的秘诀 三、StackPanel…...
14-6-2C++STL的list
(一)list对象的带参数构造 1.list(elem);//构造函数将n个elem拷贝给本身 #include <iostream> #include <list> using namespace std; int main() { list<int> lst(3,7); list<int>::iterator it; for(itlst.begi…...
【AI论文】Sigma:对查询、键和值进行差分缩放,以实现高效语言模型
摘要:我们推出了Sigma,这是一个专为系统领域设计的高效大型语言模型,其独特之处在于采用了包括DiffQKV注意力机制在内的新型架构,并在我们精心收集的系统领域数据上进行了预训练。DiffQKV注意力机制通过根据查询(Q&…...
私域流量池构建与转化策略:以开源链动2+1模式AI智能名片S2B2C商城小程序为例
摘要:随着互联网技术的快速发展,流量已成为企业竞争的关键资源。私域流量池,作为提升用户转化率和增强用户粘性的有效手段,正逐渐受到企业的广泛关注。本文旨在深入探讨私域流量池构建的目的、优势及其在实际应用中的策略…...
vofa++使用方法
控件区可以添加控件用来啊多样显示 点击一个控件然后右键可以选择要添加显示的数据,点all表全部显示, 点auto可以自动布局 要用控件需要选择协议,不知道协议具体格式可以点击问号看看,并且最好用printf重定义来实现 比如我要实现F…...
LogicFlow 一款流程图编辑框架
LogicFlow是什么 LogicFlow是一款流程图编辑框架,提供了一系列流程图交互、编辑所必需的功能和灵活的节点自定义、插件等拓展机制。LogicFlow支持前端自定义开发各种逻辑编排场景,如流程图、ER图、BPMN流程等。在工作审批流配置、机器人逻辑编排、无代码…...
HTML<kbd>标签
例子 在文档中将一些文本定义为键盘输入: <p>Press <kbd>Ctrl</kbd> <kbd>C</kbd> to copy text (Windows).</p> <p>Press <kbd>Cmd</kbd> <kbd>C</kbd> to copy text (Mac OS).</p>…...
PyQt6医疗多模态大语言模型(MLLM)实用系统框架构建初探(上.文章部分)
一、引言 1.1 研究背景与意义 在数字化时代,医疗行业正经历着深刻的变革,智能化技术的应用为其带来了前所未有的发展机遇。随着医疗数据的指数级增长,传统的医疗诊断和治疗方式逐渐难以满足现代医疗的需求。据统计,全球医疗数据量预计每年以 48% 的速度增长,到 2025 年将…...
150 Linux 网络编程6 ,从socket 到 epoll整理。listen函数参数再研究
一 . 只能被一个client 链接 socket例子 此例子用于socket 例子, 该例子只能用于一个客户端连接server。 不能用于多个client 连接 server socket_server_support_one_clientconnect.c /* 此例子用于socket 例子, 该例子只能用于一个客户端连接server。…...
深入浅出 SQLSugar:快速掌握高效 .NET ORM 框架
SQLSugar 是一个高效、易用的 .NET ORM 框架,支持多种数据库(如 SQL Server、MySQL、PostgreSQL 等)。它提供了丰富的功能,包括 CRUD 操作、事务管理、动态表名、多表联查等,开发者可以通过简单的链式操作实现复杂的数…...
ESP8266 NodeMCU与WS2812灯带:实现多种花样变换
在现代电子创意项目中,LED灯带的应用已经变得极为广泛。通过结合ESP8266 NodeMCU的强大处理能力和FastLED库的高效功能,我们可以轻松实现多达100种灯带变换效果。本文将详细介绍如何使用Arduino IDE编程,实现从基础到高级的灯光效果ÿ…...
MacOS安装Docker battery-historian
文章目录 需求安装battery-historian实测配置国内源相关文章 需求 分析Android电池耗电情况、唤醒、doze状态等都要用battery-historian, 在 MacOS 上安装 battery-historian,可以使用 Docker 进行安装runcare/battery-historian:latest。装完不需要做任…...
Linux的基本指令(上)
1.ls指令 语法:ls [选项] [目录或文件] 功能:对于⽬录,该命令列出该⽬录下的所有⼦⽬录与⽂件。对于⽂件,将列出⽂件名以及其他信息。 常用选项: -a 列出⽬录下的所有⽂件,包括以 . 开头的隐含⽂件。 -d 将…...
【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.1 从零搭建NumPy环境:安装指南与初体验
1. 从零搭建NumPy环境:安装指南与初体验 NumPy核心能力图解(架构图) NumPy 是 Python 中用于科学计算的核心库,它提供了高效的多维数组对象以及用于处理这些数组的各种操作。NumPy 的核心能力可以概括为以下几个方面:…...
ASP .NET Core 学习(.NET9)部署(一)windows
在windows部署 ASP .NET Core 的时候IIS是不二选择 一、IIS安装 不论是在window7 、w10还是Windows Server,都是十分简单的,下面以Windows10为例 打开控制面版—程序—启用或关闭Windows功能 勾选图中的两项,其中的子项看需求自行勾选&am…...
百日计划(2025年1月22日-4月30日,以完成ue4.0 shader抄写为目标)
目前遇到三个现象: 1,以前都是以跳槽为目标学习技术,但是目前工作难找,所以失去方向,有点迷茫了。 2,对于一项完整的内容,月计划时间不够用,如果工作上一扰乱,就又虎头蛇…...
AIGC视频生成模型:慕尼黑大学、NVIDIA等的Video LDMs模型
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍慕尼黑大学携手 NVIDIA 等共同推出视频生成模型 Video LDMs。NVIDIA 在 AI 领域的卓越成就家喻户晓,而慕尼黑大学同样不容小觑,…...
类与对象(中)
类的6个默认成员函数 如果一个类中什么成员都没有,简称为空类。 空类中真的什么都没有吗?并不是,任何类在什么都不写时,编译器会自动生成以下 6 个默认成员函数。默认成员函数:用户没有显式实现,编译器会生…...
如何移植ftp服务器到arm板子?
很多厂家提供的sdk,一般都不自带ftp服务器功能, 需要要发人员自己移植ftp服务器程序。 本文手把手教大家如何移植ftp server到arm板子。 环境 sdk:复旦微 Buildroot 2018.02.31. 解压 $ mkdir ~/vsftpd $ cp vsftpd-3.0.2.tar.gz ~/vs…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
