落地 轮廓匹配
个人理解为将一幅不规则的图形,通过最轮廓发现,最大轮廓匹配来确定图像的位置,再通过pt将不规则的图像放在规定的矩形里面,在通过透视变换将不规则的图形放进规则的图像中。
1. findHomography 函数
• Mat h = findHomography(srcPts, dstPts, RANSAC);
• 功能:该函数用于计算从源点集 srcPts 到目标点集 dstPts 的单应性矩阵 h。单应性矩阵描述了两个平面之间的投影变换关系。
• 参数:
• srcPts:源图像中的点集,是一个 std::vector<cv::Point2f> 类型的向量,包含至少4个点。这些点在源图像平面上定义了一个区域。
• dstPts:目标图像中的对应点集,同样是 std::vector<cv::Point2f> 类型,与 srcPts 中的点一一对应。它定义了源图像区域要映射到的目标图像区域。
• RANSAC:这是一种稳健的估计方法,称为随机抽样一致算法(Random Sample Consensus)。使用 RANSAC 时,函数会通过多次随机抽样来估计单应性矩阵,并排除可能的误匹配点,从而得到更准确可靠的单应性矩阵。
• 返回值:返回一个 cv::Mat 类型的单应性矩阵 h,它是一个 3x3 的矩阵,用于后续的透视变换。如果无法找到合适的单应性矩阵(例如点集数量不足或匹配质量太差),返回的矩阵将是一个空矩阵。
2. warpPerspective 函数
• warpPerspective(image, dst, h, Size(600, 800));
• 功能:根据给定的单应性矩阵 h 对输入图像 image 进行透视变换,并将结果存储在 dst 中。透视变换可以将图像从一个平面投影到另一个平面,常用于纠正图像的透视畸变、图像拼接等任务。
• 参数:
• image:输入的源图像,是一个 cv::Mat 类型的对象。
• dst:输出的目标图像,也是 cv::Mat 类型。在调用函数前,不需要对其进行初始化,函数会根据变换结果自动分配内存。
• h:前面通过 findHomography 函数计算得到的单应性矩阵,它决定了图像如何进行透视变换。
• Size(600, 800):指定输出图像 dst 的大小,这里宽为600像素,高为800像素。变换后的图像会被调整到这个尺寸。
这两行代码在图像变换处理中是非常关键的步骤,先计算单应性矩阵,再基于此矩阵对图像进行透视变换,从而实现将源图像的特定区域映射到目标图像的指定区域。
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char** argv) {
// Mat image = imread("D:/images/butterfly.jpg");
Mat image = imread("C:/newword/image/31.jpg");
Mat gray, binary;
cvtColor(image, gray, COLOR_BGR2GRAY);
threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
vector<vector<Point>> contours;
vector<Vec4i> hierachy;
findContours(binary, contours, hierachy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
int index = -1;
double max = -1;
for (int i = 0; i < contours.size(); i++) {
double area = contourArea(contours[i]);
if (area > max) {
max = area;
index = i;
}
}
drawContours(image, contours, index, Scalar(0, 255, 0), 2, 8);
Mat approxCurves;
vector<Point2f> srcPts;
approxPolyDP(contours[index], approxCurves, 100, true);
for (int i = 0; i < approxCurves.rows; i++) {
Vec2i pt = approxCurves.at<Vec2i>(i, 0);//0代表着索引值,访问坐标
std::cout << pt << std::endl;
srcPts.push_back(Point2f(pt[0], pt[1]));
circle(image, Point(pt[0], pt[1]), 12, Scalar(0, 0, 255), 2, 8, 0);
}
vector<Point2f> dstPts;
dstPts.push_back(Point2f(0, 0));
dstPts.push_back(Point2f(0, 800));
dstPts.push_back(Point2f(600, 800));
dstPts.push_back(Point2f(600, 0));
imshow("轮廓", image);
imwrite("C:/newword/result_c1c.png", image);
Mat h = findHomography(srcPts, dstPts, RANSAC);
Mat dst;
warpPerspective(image, dst, h, Size(600, 800));
imwrite("C:/newword/dst.p1ng", dst);
waitKey(0);
return 0;
}
相关文章:
落地 轮廓匹配
个人理解为将一幅不规则的图形,通过最轮廓发现,最大轮廓匹配来确定图像的位置,再通过pt将不规则的图像放在规定的矩形里面,在通过透视变换将不规则的图形放进规则的图像中。 1. findHomography 函数 • Mat h findHomography(s…...
【漫话机器学习系列】064.梯度下降小口诀(Gradient Descent rule of thume)
梯度下降小口诀 为了帮助记忆梯度下降的核心原理和关键注意事项,可以用以下简单口诀来总结: 1. 基本原理 损失递减,梯度为引:目标是让损失函数减少,依靠梯度指引方向。负梯度,反向最短:沿着负…...
JAVA(SpringBoot)集成Kafka实现消息发送和接收。
SpringBoot集成Kafka实现消息发送和接收。 一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者 君子之学贵一,一则明,明则有功。 一、Kafka 简介 Kafka 是由 Apache 软件基金会开发的一个开源流处理平台,最初由 Link…...
AI刷题-蛋糕工厂产能规划、优质章节的连续选择
挑两个简单的写写 目录 一、蛋糕工厂产能规划 问题描述 输入格式 输出格式 解题思路: 问题理解 数据结构选择 算法步骤 关键点 最终代码: 运行结果:编辑 二、优质章节的连续选择 问题描述 输入格式 输出格式 解题思路&a…...
在线可编辑Excel
1. Handsontable 特点: 提供了类似 Excel 的表格编辑体验,包括单元格样式、公式计算、数据验证等功能。 支持多种插件,如筛选、排序、合并单元格等。 轻量级且易于集成到现有项目中。 具备强大的自定义能力,可以调整外观和行为…...
什么是词嵌入?Word2Vec、GloVe 与 FastText 的区别
自然语言处理(NLP)领域的核心问题之一,是如何将人类的语言转换成计算机可以理解的数值形式,而词嵌入(Word Embedding)正是为了解决这个问题的重要技术。本文将详细讲解词嵌入的概念及其经典模型(Word2Vec、GloVe 和 FastText)的原理与区别。 1. 什么是词嵌入(Word Em…...
WPS数据分析000010
基于数据透视表的内容 一、排序 手动调动 二、筛选 三、值显示方式 四、值汇总依据 五、布局和选项 不显示分类汇总 合并居中带标签的单元格 空单元格显示 六、显示报表筛选页...
Qt中QVariant的使用
1.使用QVariant实现不同类型数据的相加 方法:通过type函数返回数值的类型,然后通过setValue来构造一个QVariant类型的返回值。 函数: QVariant mainPage::dataPlus(QVariant a, QVariant b) {QVariant ret;if ((a.type() QVariant::Int) &a…...
Avalonia UI MVVM DataTemplate里绑定Command
Avalonia 模板里面绑定ViewModel跟WPF写法有些不同。需要单独绑定Command. WPF里面可以直接按照下面的方法绑定DataContext. <Button Content"Button" Command"{Binding DataContext.ClickCommand, RelativeSource{RelativeSource AncestorType{x:Type User…...
动态规划DP 数字三角型模型 最低通行费用(题目详解+C++代码完整实现)
最低通行费用 原题链接 AcWing 1018. 最低同行费用 题目描述 一个商人穿过一个 NN的正方形的网格,去参加一个非常重要的商务活动。 他要从网格的左上角进,右下角出。每穿越中间 1个小方格,都要花费 1个单位时间。商人必须在 (2N−1)个单位…...
deepseek R1的确不错,特别是深度思考模式
deepseek R1的确不错,特别是深度思考模式,每次都能自我反省改进。比如我让 它写文案: 【赛博朋克版程序员新春密码——2025我们来破局】 亲爱的代码骑士们: 当CtrlS的肌肉记忆遇上抢票插件,当Spring Boot的…...
Linux 常用命令 - sort 【对文件内容进行排序】
简介 sort 命令源于英文单词 “sort”,表示排序。其主要功能是对文本文件中的行进行排序。它可以根据字母、数字、特定字段等不同的标准进行排序。sort 通过逐行读取文件(没有指定文件或指定文件为 - 时读取标准输入)内容,并按照…...
MyBatis最佳实践:提升数据库交互效率的秘密武器
第一章:框架的概述: MyBatis 框架的概述: MyBatis 是一个优秀的基于 Java 的持久框架,内部对 JDBC 做了封装,使开发者只需要关注 SQL 语句,而不关注 JDBC 的代码,使开发变得更加的简单MyBatis 通…...
选择困难?直接生成pynput快捷键字符串
from pynput import keyboard# 文档:https://pynput.readthedocs.io/en/latest/keyboard.html#monitoring-the-keyboard # 博客(pynput相关源码):https://blog.csdn.net/qq_39124701/article/details/145230331 # 虚拟键码(十六进制):https:/…...
DeepSeek-R1:强化学习驱动的推理模型
1月20日晚,DeepSeek正式发布了全新的推理模型DeepSeek-R1,引起了人工智能领域的广泛关注。该模型在数学、代码生成等高复杂度任务上表现出色,性能对标OpenAI的o1正式版。同时,DeepSeek宣布将DeepSeek-R1以及相关技术报告全面开源。…...
国内优秀的FPGA设计公司主要分布在哪些城市?
近年来,国内FPGA行业发展迅速,随着5G通信、人工智能、大数据等新兴技术的崛起,FPGA设计企业的需求也迎来了爆发式增长。很多技术人才在求职时都会考虑城市的行业分布和发展潜力。因此,国内优秀的FPGA设计公司主要分布在哪些城市&a…...
3.日常英语笔记
screening discrepancies 筛选差异 The team found some screening discrepancies in the data. 团队在数据筛选中发现了些差异。 Don’t tug at it ,or it will fall over and crush you. tug 拉,拽,拖 He tugged the door open with all his might…...
基于RIP的MGRE实验
实验拓扑 实验要求 按照图示配置IP地址配置静态路由协议,搞通公网配置MGRE VPNNHRP的配置配置RIP路由协议来传递两端私网路由测试全网通 实验配置 1、配置IP地址 [R1]int g0/0/0 [R1-GigabitEthernet0/0/0]ip add 15.0.0.1 24 [R1]int LoopBack 0 [R1-LoopBack0]i…...
【开源免费】基于Vue和SpringBoot的美食推荐商城(附论文)
本文项目编号 T 166 ,文末自助获取源码 \color{red}{T166,文末自助获取源码} T166,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...
Pandas DataFrame 拼接、合并和关联
拼接:使用 pd.concat(),可以沿着行或列方向拼接 DataFrame。 合并:使用 pd.merge(),可以根据一个或多个键进行不同类型的合并(左连接、右连接、全连接、内连接)。 关联:使用 join() 方法,通常在设置了索引的 DataFrame 上进行关联操作。 concat拼接 按列拼接 df1 = …...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...
uni-app学习笔记三十五--扩展组件的安装和使用
由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…...
