kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记
问题描述:
通过从 3D 全身照片 (TBP) 中裁剪出单个病变来识别经组织学确诊的皮肤癌病例
数据集描述:
图像+临床文本信息
评价指标:
pAUC,用于保证敏感性高于指定阈值下的AUC
主流方法分析(文本)
基于CatBoost、LGBM 和 XGBoost三者的组合,为每个算法创建了 XX个变体,总共XX个模型,进行集成学习。
CatBoost在传统梯度提升决策树(GBDT)基础上,引入了一系列关键技术创新,以提升处理类别型特征和缺失值的能力,以及整体模型性能,排序学习、目标导向的编码和缺失值处理。
LightGBM基于XGBoost基础上改进,基于Histogram(直方图)的决策树算法,单边梯度采样,互斥特征捆绑等
XGBoost,是基于预排序方法的决策树算法。这种构建决策树的算法基本思想是:首先,对所有特征都按照特征的数值进行预排序。其次,在遍历分割点的时候寻找一个特征上的最好分割点。最后,在找到一个特征的最好分割点后,将数据分裂成左右子节点。
参考超参数
lgbm_params = {'objective': 'binary','verbosity': -1,'n_estimators': 300,'early_stopping_rounds': 50,'metric': 'custom','boosting_type': 'gbdt','lambda_l1': 0.08758718919397321, 'lambda_l2': 0.0039689175176025465, 'learning_rate': 0.03231007103195577, 'max_depth': 4, 'num_leaves': 128, 'colsample_bytree': 0.8329551585827726, 'colsample_bynode': 0.4025961355653304, 'bagging_fraction': 0.7738954452473223, 'bagging_freq': 4, 'min_data_in_leaf': 85, 'scale_pos_weight': 2.7984184778875543,"device": "gpu"
}
cb_params = {'loss_function': 'Logloss','iterations': 300,'early_stopping_rounds': 50,'verbose': False,'max_depth': 7, 'learning_rate': 0.06936242010150652, 'scale_pos_weight': 2.6149345838209532, 'l2_leaf_reg': 6.216113851699493,'min_data_in_leaf': 24,'cat_features': cat_cols,"task_type": "CPU",
}
xgb_params = {'enable_categorical': True,'tree_method': 'hist','disable_default_eval_metric': 1,'n_estimators': 300,'early_stopping_rounds': 50,'learning_rate': 0.08501257473292347, 'lambda': 8.879624125465703, 'alpha': 0.6779926606782505, 'max_depth': 6, 'subsample': 0.6012681388711075, 'colsample_bytree': 0.8437772277074493, 'colsample_bylevel': 0.5476090898823716, 'colsample_bynode': 0.9928601203635129, 'scale_pos_weight': 3.29440313334688,"device": "cuda",
}
主流方法分析(图像),深度学习算法提取特征,将图像特征与文本特征一并送入提升树模型
- EVA02-small (eva02_small_patch14_336.mim_in22k_ft_in1k) 和EdgeNeXt (edgenext_base.in21k_ft_in1k)
- eva02_small,deit3_small,beitv2_base,convnextv2_tiny,swinv2_small, resnext50, convnextv2_nano
- swin_tiny,convnextv2_base,convnextv2_large,coatnet_rmlp_1
相关文章:
kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记
问题描述: 通过从 3D 全身照片 (TBP) 中裁剪出单个病变来识别经组织学确诊的皮肤癌病例 数据集描述: 图像临床文本信息 评价指标: pAUC,用于保证敏感性高于指定阈值下的AUC 主流方法分析(文本) 基于CatBoo…...
滤波电路汇总
0、前言 1. 引言 滤波电路是电子系统中不可或缺的组成部分,其主要功能是选择性地通过或衰减特定频率范围内的信号。在现代电子技术中,滤波电路广泛应用于信号处理、通信系统、音频设备、电源设计等多个领域。通过滤波,可以去除信号中的噪声和干扰,提高信号的质量和稳定性…...
1.Template Method 模式
模式定义 定义一个操作中的算法的骨架(稳定),而将一些步骤延迟(变化)到子类中。Template Method 使得子类可以不改变(复用)一个算法的结构即可重定义(override 重写)该算法的某些特…...
MySQL分表自动化创建的实现方案(存储过程、事件调度器)
《MySQL 新年度自动分表创建项目方案》 一、项目目的 在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低。分表是一种有效的优化策略,它将数据分散存储在多…...
基于回归分析法的光伏发电系统最大功率计算simulink建模与仿真
目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于回归分析法的光伏发电系统最大功率计算simulink建模与仿真。选择回归法进行最大功率点的追踪,使用光强和温度作为影响因素,电压作为输出进行建模。…...
计算机毕业设计【任务书】怎么写?
1. 什么是毕业设计任务书 毕业设计任务书是学生在毕业设计初期向指导教师提交的文档,主要用于说明毕业设计的选题、研究内容、目标、方法、进度安排等。 2. 撰写任务书的步骤 2.1 确定选题 选题是撰写任务书的第一步。选题应结合自身兴趣、专业方向和实际应用需…...
GRAPHARG——学习
20250106 项目git地址:https://github.com/microsoft/graphrag.git 版本:1.2.0 ### This config file contains required core defaults that must be set, along with a handful of common optional settings. ### For a full list of available setti…...
【Rust自学】15.6. RefCell与内部可变性:“摆脱”安全性限制
题外话,这篇文章一共4050字,是截止到目前为止最长的文章,如果你能坚持读完并理解,那真的很强! 喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以…...
14.模型,纹理,着色器
模型、纹理和着色器是计算机图形学中的三个核心概念,用通俗易懂的方式来解释: 1. 模型:3D物体的骨架 通俗解释: 模型就像3D物体的骨架,定义了物体的形状和结构。 比如,一个房子的模型包括墙、屋顶、窗户等…...
【C语言分支与循环结构详解】
目录 ---------------------------------------begin--------------------------------------- 一、分支结构 1. if语句 2. switch语句 二、循环结构 1. for循环 2. while循环 3. do-while循环 三、嵌套结构 结语 -----------------------------------------end----…...
新项目上传gitlab
Git global setup git config --global user.name “FUFANGYU” git config --global user.email “fyfucnic.cn” Create a new repository git clone gitgit.dev.arp.cn:casDs/sawrd.git cd sawrd touch README.md git add README.md git commit -m “add README” git push…...
qt-QtQuick笔记之常见项目类简要介绍
qt-QtQuick笔记之常见项目类简要介绍 code review! 文章目录 qt-QtQuick笔记之常见项目类简要介绍1.QQuickItem2.QQuickRectangle3.QQuickImage4.QQuickText5.QQuickBorderImage6.QQuickTextInput7.QQuickButton8.QQuickSwitch9.QQuickListView10.QQuickGridView11.QQuickPopu…...
Continuous Batching 连续批处理
原始论文题目: Continuous Batching — ORCA: a distributed serving system for Transformer-based generative models 关键词: Continuous Batching, iteration-level scheduling, selective batching 1.迭代级调度(iteration-level scheduling) Orca系统又由几个关键…...
海外问卷调查渠道查如何设置:最佳实践+示例
随着经济全球化和一体化进程的加速,企业间的竞争日益加剧,为了获得更大的市场份额,对企业和品牌而言,了解受众群体的的需求、偏好和痛点才是走向成功的关键。而海外问卷调查才是获得受众群体痛点的关键,制作海外问卷调…...
把本地搭建的hexo博客部署到自己的服务器上
配置远程服务器的git 安装git 安装依赖工具包 yum install -y curl-devel expat-devel gettext-devel openssl-devel zlib-devel安装编译工具 yum install -y gcc perl-ExtUtils-MakeMaker package下载git,也可以去官网下载了传到服务器上 wget https://www.ke…...
初阶数据结构:链表(二)
目录 一、前言 二、带头双向循环链表 1.带头双向循环链表的结构 (1)什么是带头? (2)什么是双向呢? (3)那什么是循环呢? 2.带头双向循环链表的实现 (1)节点结构 (2…...
postgresql根据主键ID字段分批删除表数据
生产环境针对大表的处理相对比较麻烦。 方案1、直接truncate,可能会遇到系统卡主的情况,因为truncate的过程中会对表进行加锁,会导致数据不能正常的写入 方案2、创建一个同结构的表结构,rename旧表,不停业务rename表担…...
10.business english-global market
eco-friendly case study: 案例学习 At the workshop工作坊, they agreed to emphasize eco-friendliness,adapt messageing, and boost digital marketing to stand out globally. Our study shows that more people want eco-friendly products in different places.Looks …...
C 语言实现计算一年中指定日期是第几天 题】
引言 在编程的世界里,处理日期和时间相关的问题是非常常见的。比如在日历应用、任务管理系统、数据分析等场景中,经常需要计算某个日期在一年中是第几天。本文将详细介绍如何使用 C 语言来实现这一功能,通过分析代码的结构、逻辑以及可能存在…...
深入理解三高架构:高可用性、高性能、高扩展性的最佳实践
引言 在现代互联网环境下,随着用户规模和业务需求的快速增长,系统架构的设计变得尤为重要。为了确保系统能够在高负载和复杂场景下稳定运行,"三高架构"(高可用性、高性能、高扩展性)成为技术架构设计中的核…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
