【Rust自学】15.4. Drop trait:告别手动清理,释放即安全
喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)

15.4.1. Drop trait的意义
类型如果实现了Drop trait,就可以让程序员自定义当值离开作用域时发生的操作。例如文件、网络资源的释放等。
在某些语言中(比如C/C++),对于某些类型,程序员每次使用完这些类型的实例时都必须写代码来释放内存或资源。如果忘记了,系统可能会过载并崩溃。在Rust中,程序员可以指定每当值超出范围时运行特定的代码,编译器将自动插入此代码。
任何类型都可以实现Drop trait,而Drop trait只要求实现drop方法,其参数是对self的可变引用。Drop trait在预导入模块(prelude),所以说使用它时不需要手动地引入。看个例子:
struct CustomSmartPointer {data: String,
}impl Drop for CustomSmartPointer {fn drop(&mut self) {println!("Dropping CustomSmartPointer with data `{}`!", self.data);}
}fn main() {let c = CustomSmartPointer {data: String::from("my stuff"),};let d = CustomSmartPointer {data: String::from("other stuff"),};println!("CustomSmartPointers created.");
}
- 结构体
CustomSmartPointer下有data字段,为String类型。 - 通过
impl Drop for CustomSmartPointer为CustomSmartPointer实现了Droptrait。在其里面实现drop方法,参数是&mut self。这个方法通常是用于释放资源的,但出于演示的目的,这个方法里就只打印了一句话,把self里的data字段的数据打印出来。 - 在
main函数里创建了两个CustomSmartPointer的实例:c存的是"my stuff",d存的是other stuff。最后打印"CustomSmartPointers created."。
输出:
CustomSmartPointers created.
Dropping CustomSmartPointer with data `other stuff`!
Dropping CustomSmartPointer with data `my stuff`!
程序会先打印main函数的println!的内容,也就是"CustomSmartPointers created."。由于c和d走出作用域都在第19行花括号后,所以程序接着会分别对c和d调用drop函数。在实现Drop trait时定义的drop函数是打印一句话,所以这里c和d就会分别打印一句话。
15.4.2. 使用std::mem::drop来提前drop值
比较遗憾的是,我们很难直接禁用自动的drop功能,也没必要。因为Drop trait的目的就是进行自动的释放处理逻辑。
此外,Rust不允许手动调用Drop trait的drop方法。但是可以调用标准库的std::mem::drop函数来提前drop值,相当于提前调用了Drop trait的drop方法,它的参数是要丢弃的值。看个例子:
struct CustomSmartPointer {data: String,
}impl Drop for CustomSmartPointer {fn drop(&mut self) {println!("Dropping CustomSmartPointer with data `{}`!", self.data);}
}fn main() {let c = CustomSmartPointer {data: String::from("my stuff"),};let d = CustomSmartPointer {data: String::from("other stuff"),};drop(c);println!("CustomSmartPointers created.");
}
在main函数中手动使用drop函数把c清理掉,而d还是自动清理的,这个时候的输出顺序应该是c在d前。
输出:
Dropping CustomSmartPointer with data `my stuff`!
CustomSmartPointers created.
Dropping CustomSmartPointer with data `other stuff`!
这里有些人可能会提出疑问:c在走出作用域之前就被释放了,那么在走出作用域后编译器会不会再调用一次drop方法导致二次释放(double free)的错误呢?答案是不会,Rust的设计很安全,它的所有权系统会保证引用的有效,而drop也只会在确定不再使用这个值时被调用1次。
相关文章:
【Rust自学】15.4. Drop trait:告别手动清理,释放即安全
喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 15.4.1. Drop trait的意义 类型如果实现了Drop trait,就可以让程序员自定义当值…...
【算法】【归并排序】AcWing 算法基础 788. 逆序对的数量
题目 给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量。 逆序对的定义如下:对于数列的第 i个和第 j 个元素,如果满足 i<j且 a[i]>a[j],则其为一个逆序对;否则不是。 输入格式 第一行包含整数 n&#…...
一个局域网通过NAT访问另一个地址重叠的局域网(IP方式访问)
正文共:1335 字 7 图,预估阅读时间:4 分钟 现在,我们已经可以通过调整两台设备的组合配置(地址重叠时,用户如何通过NAT访问对端IP网络?)或仅调整一台设备的配置(仅操作一…...
05-机器学习-数据标注
一、学习数据标注的核心目标 数据标注不仅是“打标签”,而是理解数据与AI模型之间的桥梁。需要掌握: 标注技术:不同任务类型的标注方法(如分割、实体识别)。标注工具:高效使用专业工具(如CVAT…...
LQ1052 Fibonacci斐波那契数列
题目描述 Fibonacci斐波那契数列也称为兔子数列,它的递推公式为:FnFn-1Fn-2,其中F1F21。 当n比较大时,Fn也非常大,现在小蓝想知道,Fn除以10007的余数是多少,请你编程告诉她。 输入 输入包含一…...
AWTK 骨骼动画控件发布
Spine 是一款广泛使用的 2D 骨骼动画工具,专为游戏开发和动态图形设计设计。它通过基于骨骼的动画系统,帮助开发者创建流畅、高效的角色动画。本项目是基于 Spine 实现的 AWTK 骨骼动画控件。 代码:https://gitee.com/zlgopen/awtk-widget-s…...
分库分表后如何进行join操作
在分库分表后的系统中,进行表之间的 JOIN 操作比在单一数据库表中复杂得多,因为涉及的数据可能位于不同的物理节点或分片中。此时,传统的 SQL JOIN 语句不能直接用于不同分片的数据,以下是几种处理这样的跨分片 JOIN 操作的方法&a…...
arkui-x 前端布局编码模板
build() {Column() {Row() {// 上侧页面布局实现}// 下侧页面布局实现}.width(Const.THOUSANDTH_1000).height(Const.THOUSANDTH_1000).justifyContent(FlexAlign.SpaceBetween).backgroundImage($r(app.media.background_xxx)).backgroundImageSize(ImageSize.Cover).backgrou…...
宝塔面板SSL加密访问设置教程
参考:https://www.bt.cn/bbs/thread-117246-1-1.html 如何快速使用证书加密访问面板 因早期默认未开启https访问所以没有相关的风险提醒,现面板默认已开启https加密访问、提升安全性 由于采用的是服务器内部本身签发证书,不被公网浏览器信任请参考以下步…...
c++ set/multiset 容器
1. set 基本概念 简介: 所有元素都会在插入时自动排序本质: set/multiset属于关联式容器,底层结构是用二叉树实现。set 和 multiset 区别: set容器不允许有重复的元素。 multiset允许有重复的元素。2. set 构造和赋值 构造&a…...
前部分知识复习02
一、物体的屏幕UV坐标 float2 ScreenUV i.pos.xy / _ScreenParams.xy; 二、抓取屏幕图像 GrabPass{" _A "} //_A为贴图图像名称 之后需在Pass中声明该贴图才能在Pass中引用此贴图 三、屏幕抓取并制作热效应代码 Shader"unity/HeatDistort 07" {Pr…...
开发环境搭建-3:配置 JavaScript 开发环境 (fnm+ nodejs + pnpm + nrm)
在 WSL 环境中配置:WSL2 (2.3.26.0) Oracle Linux 8.7 官方镜像 node 官网:https://nodejs.org/zh-cn/download 点击【下载】,选择想要的 node 版本、操作系统、node 版本管理器、npm包管理器 根据下面代码提示依次执行对应代码即可 基本概…...
kotlin内联函数——let,run,apply,also,with的区别
一、概述 为了帮助您根据使用场景选择合适的作用域函数(scope function),我们将对它们进行详细描述并提供使用建议。从技术上讲,许多情况下范围函数是可以互换使用的,因此示例中展示了使用它们的约定俗成的做法。 1.…...
【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数设置
【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数设置 【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数设置 文章目录 【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数…...
数据结构与算法-要点整理
知识导图: 一、数据结构 包含:线性表(数组、队列、链表、栈)、散列表、树(二叉树、多路查找树)、图 1.线性表 数据之间就是“一对一“的逻辑关系。 线性表存储数据的实现方案有两种,分别是顺序存储结构和链式存储结构。 包含:数组、队列、链表、栈。 1.1 数组…...
Fort Firewall:全方位守护网络安全
Fort Firewall是一款专为 Windows 操作系统设计的开源防火墙工具,旨在为用户提供全面的网络安全保护。它基于 Windows 过滤平台(WFP),能够与系统无缝集成,确保高效的网络流量管理和安全防护。该软件支持实时监控网络流…...
Nginx实战技巧(Practical Tips for nginx)
引言 简介 Nginx(发音为 "engine-x")是一个高性能的HTTP和反向代理服务器. Nginx以其高并发处理能力、低资源消耗和灵活的配置而闻名,适用于高流量的Web服务器和应用程序。 Nginx的主要功能包括: HTTP服务器…...
YOLOv8:目标检测与实时应用的前沿探索
随着深度学习和计算机视觉技术的迅速发展,目标检测(Object Detection)一直是研究热点。YOLO(You Only Look Once)系列模型作为业界广受关注的目标检测框架,凭借其高效、实时的特点,一直迭代更新…...
解锁数字经济新动能:探寻 Web3 核心价值
随着科技的快速发展,我们正迈入一个全新的数字时代,Web3作为这一时代的核心构成之一,正在为全球数字经济带来革命性的变革。本文将探讨Web3的核心价值,并如何推动数字经济的新动能。 Web3是什么? Web3,通常…...
Lua 环境的安装
1.安装Lua运行环境 本人采用的是在windows系统中使用cmd指令方式进行安装,安装指令如下: winget install "lua for windows" 也曾使用可执行程序安装过,但由于电脑是加密电脑,最后都已失败告终。使用此方式安装可以安…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
中科院1区顶刊|IF14+:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点
中科院1区顶刊|IF14:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点 当下,免疫与代谢性疾病的关联研究已成为生命科学领域的前沿热点。随着研究的深入,我们愈发清晰地认识到免疫系统与代谢系统之间存在着极为复…...
自定义线程池1.2
自定义线程池 1.2 1. 简介 上次我们实现了 1.1 版本,将线程池中的线程数量交给使用者决定,并且将线程的创建延迟到任务提交的时候,在本文中我们将对这个版本进行如下的优化: 在新建线程时交给线程一个任务。让线程在某种情况下…...
GC1808:高性能音频ADC的卓越之选
在音频处理领域,高质量的音频模数转换器(ADC)是实现精准音频数字化的关键。GC1808,一款96kHz、24bit立体声音频ADC,以其卓越的性能和高性价比脱颖而出,成为众多音频设备制造商的理想选择。 GC1808集成了64倍…...
