【现代深度学习技术】深度学习计算 | 参数管理
【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ ⌈PyTorch深度学习 ⌋ ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。
文章目录
- 一、参数访问
- (一)目标参数
- (二)一次性访问所有参数
- (三)从嵌套块收集参数
- 二、参数初始化
- (一)内置初始化
- (二)自定义初始化
- 三、参数绑定
- 小结
在选择了架构并设置了超参数后,我们就进入了训练阶段。此时,我们的目标是找到使损失函数最小化的模型参数值。经过训练后,我们将需要使用这些参数来做出未来的预测。此外,有时我们希望提取参数,以便在其他环境中复用它们,将模型保存下来,以便它可以在其他软件中执行,或者为了获得科学的理解而进行检查。
之前的介绍中,我们只依靠深度学习框架来完成训练的工作,而忽略了操作参数的具体细节。本节,我们将介绍以下内容:
- 访问参数,用于调试、诊断和可视化;
- 参数初始化;
- 在不同模型组件间共享参数。
我们首先看一下具有单隐藏层的多层感知机。
import torch
from torch import nnnet = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
一、参数访问
我们从已有模型中访问参数。当通过Sequential
类定义模型时,我们可以通过索引来访问模型的任意层。这就像模型是一个列表一样,每层的参数都在其属性中。如下所示,我们可以检查第二个全连接层的参数。
print(net[2].state_dict())
输出的结果告诉我们一些重要的事情:首先,这个全连接层包含两个参数,分别是该层的权重和偏置。两者都存储为单精度浮点数(float32)。注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。
(一)目标参数
注意,每个参数都表示为参数类的一个实例。要对参数执行任何操作,首先我们需要访问底层的数值。有几种方法可以做到这一点。有些比较简单,而另一些则比较通用。下面的代码从第二个全连接层(即第三个神经网络层)提取偏置,提取后返回的是一个参数类实例,并进一步访问该参数的值。
print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
参数是复合的对象,包含值、梯度和额外信息。这就是我们需要显式参数值的原因。除了值之外,我们还可以访问每个参数的梯度。在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。
net[2].weight.grad == None
(二)一次性访问所有参数
当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂,因为我们需要递归整个树来提取每个子块的参数。下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。
print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])
这为我们提供了另一种访问网络参数的方式,如下所示。
net.state_dict()['2.bias'].data
(三)从嵌套块收集参数
让我们看看,如果我们将多个块相互嵌套,参数命名约定是如何工作的。我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。
def block1():return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())def block2():net = nn.Sequential()for i in range(4):# 在这里嵌套net.add_module(f'block {i}', block1())return netrgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
设计了网络后,我们看看它是如何工作的。
print(rgnet)
因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。
rgnet[0][1][0].bias.data
二、参数初始化
知道了如何访问参数后,现在我们看看如何正确地初始化参数。我们在【深度学习基础】多层感知机 | 数值稳定性和模型初始化 中讨论了良好初始化的必要性。深度学习框架提供默认随机初始化,也允许我们创建自定义初始化方法,满足我们通过其他规则实现初始化权重。
默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵,这个范围是根据输入和输出维度计算出的。PyTorch的nn.init
模块提供了多种预置初始化方法。
(一)内置初始化
让我们首先调用内置的初始化器。下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量,且将偏置参数设置为0。
def init_normal(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, mean=0, std=0.01)nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
我们还可以将所有参数初始化为给定的常数,比如初始化为1。
def init_constant(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 1)nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
我们还可以对某些块应用不同的初始化方法。例如,下面我们使用Xavier初始化方法初始化第一个神经网络层,然后将第三个神经网络层初始化为常量值42。
def init_xavier(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)
def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 42)net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
(二)自定义初始化
有时,深度学习框架没有提供我们需要的初始化方法。在下面的例子中,我们使用以下的分布为任意权重参数 w w w定义初始化方法:
w ∼ { U ( 5 , 10 ) 可能性 1 4 0 可能性 1 2 U ( − 10 , − 5 ) 可能性 1 4 (1) \begin{aligned} w \sim \begin{cases} U(5, 10) & \text{ 可能性 } \frac{1}{4} \\ 0 & \text{ 可能性 } \frac{1}{2} \\ U(-10, -5) & \text{ 可能性 } \frac{1}{4} \end{cases} \end{aligned} \tag{1} w∼⎩ ⎨ ⎧U(5,10)0U(−10,−5) 可能性 41 可能性 21 可能性 41(1)
同样,我们实现了一个my_init
函数来应用到net
。
def my_init(m):if type(m) == nn.Linear:print("Init", *[(name, param.shape) for name, param in m.named_parameters()][0])nn.init.uniform_(m.weight, -10, 10)m.weight.data *= m.weight.data.abs() >= 5net.apply(my_init)
net[0].weight[:2]
注意,我们始终可以直接设置参数。
net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
三、参数绑定
有时我们希望在多个层间共享参数:我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。
# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), shared, nn.ReLU(),shared, nn.ReLU(), nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
这个例子表明第三个和第五个神经网络层的参数是绑定的。它们不仅值相等,而且由相同的张量表示。因此,如果我们改变其中一个参数,另一个参数也会改变。这里有一个问题:当参数绑定时,梯度会发生什么情况?答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层(即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。
小结
- 我们有几种方法可以访问、初始化和绑定模型参数。
- 我们可以使用自定义初始化方法。
相关文章:

【现代深度学习技术】深度学习计算 | 参数管理
【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈PyTorch深度学习 ⌋ ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重…...
团体程序设计天梯赛-练习集——L1-024 后天
前言 首先祝大家新年快乐,然后博主今点炮让炮崩了一下,水一天 这道题5分非常简单,有不少的做法 L1-024 后天 如果今天是星期三,后天就是星期五;如果今天是星期六,后天就是星期一。我们用数字1到7对应星期…...

JVM栈溢出线上环境排查
#查看当前Linux系统进程ID、线程ID、CPU占用率(-eo后面跟想要展示的列) ps H -eo pid,tid,%cpups H -eo pid,tid,%cpu |grep tid #使用java jstack 查看进程id下所有线程id的情况 jstack pid 案例2 通过jstack 排查死锁问题 #启动java代码 jstack 进…...
Java实现FIFO缓存策略实战
实现FIFO模型选择FIFO模型实现过程FIFO模型完整代码下面看一下先进先出的示例过程总结FIFO(First In First Out,先进先出)策略是一种基本的数据处理和存储管理方法,在Java中,这种策略通常用于管理那些需要按照顺序处理的数据项,比如任务的队列、数据的传输缓冲区等。在Ja…...

set集合
set集合 Set系列集合: 无序:存取顺序不一致 不重复:可以去除重复 无索引:没有带索引的方法,所以不能使用普通for循环遍历,也不能通过索引来获取元素 可以看出set是无序的存和打印的顺序不一样 Set接中的…...

【数据结构】 并查集 + 路径压缩与按秩合并 python
目录 前言模板朴素实现路径压缩按秩合并按树高为秩按节点数为秩 总结 前言 并查集的基本实现通常使用森林来表示不同的集合,每个集合用一棵树表示,树的每个节点有一个指向其父节点的指针。 如果一个节点是它自己的父节点,那么它就是该集合的代…...

无耳科技 Solon v3.0.7 发布(2025农历新年版)
Solon 框架! Solon 框架由杭州无耳科技有限公司(下属 Noear 团队)开发并开源。是新一代,面向全场景的 Java 企业级应用开发框架。从零开始构建(非 java-ee 架构),有灵活的接口规范与开放生态。…...

UART、I2C和SPI对比
UARTSPII2C英文Universal Asynchronous Receive/TransmitSerial Peripheral InterfaceInner Integrated Communication通讯速度115200、38400 bit/s高达100M bit/s 100k、400k、1M、3.4M bit/s时钟同/异步性时钟异步时钟同步时钟同步接线方式3线(Rx、Tx、GND) 4线(MISO、…...

Vue 响应式渲染 - 待办事项简单实现
Vue 渐进式JavaScript 框架 基于Vue2的学习笔记 - Vue 响应式渲染 - 待办事项简单实现 目录 待办事项简单实现 页面初始化 双向绑定的指令 增加留言列表设置 增加删除按钮 最后优化 总结 待办事项简单实现 页面初始化 对页面进行vue的引入、创建输入框和按钮及实例化V…...

ResNeSt: Split-Attention Networks论文学习笔记
这张图展示了一个名为“Split-Attention”的神经网络结构,该结构在一个基数组(cardinal group)内进行操作。基数组通常指的是在神经网络中处理的一组特征或通道。图中展示了如何通过一系列操作来实现对输入特征的注意力机制。 以下是图中各部…...

澳洲硕士毕业论文写作中如何把握主题
每到毕业季时,澳洲硕士毕业论文写作是留学生学业的头等大事。但是经常有留学生在澳洲毕业论文写作过程中会遇到写了一半,但是不知道应该如何继续下去的问题。有时候是在literature review的部分就越写越觉得偏离了方向,有时候是在数据收集阶段…...

STM32 LED呼吸灯
接线图: 这里将正极接到PA0引脚上,负极接到GND,这样就高电平点亮LED,低电平熄灭。 占空比越大,LED越亮,占空比越小,LED越暗 PWM初始化配置 输出比较函数介绍: 用这四个函数配置输…...
Java数据库操作指南:快速上手JDBC【学术会议-2025年数字化教育与信息技术(DEIT 2025】
大会官网:www.ic-deit.org 前言 在现代企业应用中,数据库是数据存储和管理的重要组成部分。Java作为一种广泛使用的编程语言,提供了多种方式与数据库进行交互。本文将介绍 JDBC(Java Database Connectivity)&#x…...
2024年个人总结
序 照例,每年都有的个人年度总结来了,看了很多其他大佬的总结,感觉自己的2024过于单薄,故事也不太丰满,自己就回去比较,自己哪里做的不好 ?但后来发现已经进入了一个思维误区。 年度总结年度总结…...
GitHub 仓库的 Archived 功能详解:中英双语
GitHub 仓库的 Archived 功能详解 一、什么是 GitHub 仓库的 “Archived” 功能? 在 GitHub 上,“Archived” 是一个专门用于标记仓库状态的功能。当仓库被归档后,它变为只读模式,所有的功能如提交代码、创建 issue 和 pull req…...
LeetCode:56.合并区间
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:56.合并区间 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] [starti,…...
Vue演练场基础知识(七)插槽
为学习Vue基础知识,我动手操作通关了Vue演练场,该演练场教程的目标是快速体验使用 Vue 是什么感受,设置偏好时我选的是选项式 单文件组件。以下是我结合深入指南写的总结笔记,希望对Vue初学者有所帮助。 文章目录 十五. 插槽插槽…...

进程池的制作(linux进程间通信,匿名管道... ...)
目录 一、进程间通信的理解 1.为什么进程间要通信 2.如何进行通信 二、匿名管道 1.管道的理解 2.匿名管道的使用 3.管道的五种特性 4.管道的四种通信情况 5.管道缓冲区容量 三、进程池 1.进程池的理解 2.进程池的制作 四、源码 1.ProcessPool.hpp 2.Task.hpp 3…...
【Linux】Linux C比较两个 IPv6 网关地址是否相等,包括前缀
功能说明 在 Linux 环境下使用 C 语言比较两个 IPv6 网关地址是否相等,包括前缀 实现步骤 解析 IPv6 地址:使用 inet_pton 将字符串形式的 IPv6 地址转换为二进制形式。解析前缀长度:从地址字符串中提取前缀长度(如 /64…...
【uniapp】uniapp使用java线程池
标题 由于js是性能孱弱的单线程语言,只要在渲染中执行了一些其他操作,会中断渲染,导致页面卡死,卡顿,吐司不消失等问题。在安卓端可以调用java线程池,把耗时操作写入线程池里面,优化性能。 实…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...