具身智能研究报告
参考:
(1)GTC大会&Figure:“具身智能”奇点已至
(2)2024中国具身智能创投报告
(3)2024年具身智能产业发展研究报告
(4)具身智能行业深度:发展趋势、市场机遇
1 “具身智能”奇点已至
英伟达机器人平台:
(1)感知层:Issac Perceptor & Issac Manipulator
(2)训练层:Issac SIM in Omniverse
,机器人模拟工具包
(3)算力:Jetson Thor Soc芯片,提供800 Tflops的FP8算力,100GB以太网带宽
当前一体化大模型VLA的准确性较低,且存在实时性问题,因此短期内商业化的最佳方案仍然是VLM大模型+基础运控算法的结合
问题:短期内一体化大模型实时性困境
难以逾越
分层式决控路径短期
或将是人形机器人落地的较优选择
分层式决控相当于将两个成熟的部分进行结合,在高层级的VLM大模型输出的动作序列后进行解码并交由低层级的运动控制进行下一个环节,Figure 01也已证实该路径可用较短的时间能实现很强的效果,因此我们认为分层式决控路径是短期内人形机器人落地的较优选择。
长期来看,人形机器人需要依赖大模型能力的提升来实现通用化。目前VLM+运动控制算法大多需要用模仿学习,从演示中学习复杂的移动操作任务。目前面对未训练的场景和任务时,其任务完成的准确性和模型的泛化性存在较大质疑。一体化大模型作为端到端近似于人类思考方式的控制方法,是人形机器人发展最终所追求的目标。
Issac lab、sim
对于人形从“机器人”到“具身智能”有极为重要的意义。
没有理解及交互能力的机器人无法通用,而初创型公司自行开发软件及大模型的难度极高,该平台有望催生出更多人形厂商,且我们不排除未来英伟达亲自下场实现“具身智能”。
2 具身智能创投报告
具身智能的训练方法:模仿学习和强化学习
模仿学习:智能体通过观察和模仿专家的行为来学习任务
优点:快速学习专家策略,无需复杂探索
缺点:学习的行为策略受限于专家策略,对于未知情况,泛化能力差
强化学习:智能体通过与环境的交互来学习最佳行为策略,以最大化某种累积奖励
优点:能够通过探索环境来学习未知策略,可处理高度不确定和动态变化的环境
缺点:需要大量探索和试错,学习缓慢,对于复杂任务,设计合适的奖励函数难度较高
3 具身智能产业发展研究报告
尽管人形机器人在实现具身智能方面具有显著优势,但并非所有具身智能系统都必须采用人形机器人的形态。可以根据具体任务和环境需求选择合适的智能实体形态。例如,在家庭中行驶并与人进行交互的宠物机器人、L4自动驾驶车等,本质上都具备“具身”和“智能”两种属性。
4 具身智能行业深度:发展趋势、市场机遇
细分应用场景
(1)工业制造领域:打破人机协作瓶颈,实现智能化柔性适配
(2)自动驾驶领域:适应开放交通环境,实现安全可靠智能驾驶
(3)物流运输领域:优化仓储物流产线,实现高效货物运转
(4)家庭服务领域:解放人类双手束缚,实现全场景的智能家务服务
(5)医疗康养领域:应对老龄化问题,实现拟人化交互服务
(6)其他领域:从赋能到变革,推动各行各业创新与转型
相关文章:

具身智能研究报告
参考: (1)GTC大会&Figure:“具身智能”奇点已至 (2)2024中国具身智能创投报告 (3)2024年具身智能产业发展研究报告 (4)具身智能行业深度:发展…...

Windows安装Milvus
安装Milvus 安装Docker前置条件: 安装Mlivus方案一方案二 Attu管理端 安装Docker 系统:Windows 11 家庭中文版 Mlivus:V2.3.0 Attu: V2.3.10 前置条件: 启用“适用于 Linux 的 Windows 子系统”可选功能,才能在 Win…...

Excel分区间统计分析(等步长、不等步长、多维度)
在数据分析过程中,可能会需要统计不同数据区间的人数、某个数据区间的平均值或者进行分组区间统计,本文从excel函数到数据透视表的方法,从简单需求到复杂需求,采用不同的方法进行讲解,尤其是通过数据透视表的强大功能大…...

宝塔mysql数据库容量限制_宝塔数据库mysql-bin.000001占用磁盘空间过大
磁盘空间占用过多,排查后发现网站/www/wwwroot只占用7G,/www/server占用却高达8G,再深入排查发现/www/server/data目录下的mysql-bin.000001和mysql-bin.000002两个日志文件占去了1.5G空间。 百度后学到以下知识,做个记录。 mysql…...
LeetCode 2412.完成所有交易的初始最少钱数:【年度巨献】举例说明(讲明白),由难至简(手脚不乱),附Python一行版
【LetMeFly】2412.完成所有交易的初始最少钱数:【年度巨献】举例说明(讲明白),由难至简(手脚不乱),附Python一行版 文章目录 【LetMeFly】2412.完成所有交易的初始最少钱数:【年度巨献】举例说明(讲明白),由难至简(手脚…...

多人-多agent协同可能会挑战维纳的反馈
在多人-多Agent协同系统中,维纳的经典反馈机制将面临新的挑战,而协同过程中的“算计”(策略性决策与协调)成为实现高效协作的核心。 1、非线性与动态性 维纳的反馈理论(尤其是在控制理论中)通常假设系统的动…...

Go学习:类型转换需注意的点 以及 类型别名
目录 1. 类型转换 2. 类型别名 1. 类型转换 在从前的学习中,知道布尔bool类型变量只有两种值true或false,C/C、Python、JAVA等编程语言中,如果将布尔类型bool变量转换为整型int变量,通常采用 “0为假,非0为真”的方…...
C语言中的局部变量和全局变量有什么区别?
在C语言中,局部变量和全局变量是两种具有不同作用域和存储期的变量。以下是它们之间的主要区别: 作用域 局部变量: 局部变量是在函数内部声明的变量。它们的作用域仅限于声明它们的函数内部。一旦函数执行完毕,局部变量就会超出…...
价值交换到底在交换什么
有人十多岁就很清醒,知道自己想要什么,要付出什么。有人20多岁清醒了,有人30多岁都不一定明白。 价值交换,四个字其实就可以解释大部分事情。价值交换和努力工作,勤劳没有任何关系。甚至努力和成功都不存在关系。 价值…...

C++传送锚点的内存寻址:内存管理
文章目录 1.C/C内存分布回顾2.C内存管理2.1 内存申请2.2 operator new与operator delete函数2.3 定位new表达式 3.关于内存管理的常见知识点3.1 malloc/free和new/delete的区别3.2 内存泄漏 希望读者们多多三连支持小编会继续更新你们的鼓励就是我前进的动力! 继C语…...

Prompt提示词完整案例:让chatGPT成为“书单推荐”的高手
大家好,我是老六哥,我正在共享使用AI提高工作效率的技巧。欢迎关注我,共同提高使用AI的技能,让AI成功你的个人助理。 许多人可能会跟老六哥一样,有过这样的体验:当我们遇到一个能力出众或对事物有独到见解的…...

基于django的智能停车场车辆管理深度学习车牌识别系统
完整源码项目包获取→点击文章末尾名片!...

【Proteus仿真】【51单片机】简易计算器系统设计
目录 一、主要功能 二、使用步骤 三、硬件资源 四、软件设计 五、实验现象 联系作者 一、主要功能 1、LCD1602液晶显示 2、矩阵按键 3、可以进行简单的加减乘除运算 4、最大 9999*9999 二、使用步骤 系统运行后,LCD1602显示数据,通过矩阵按键…...

洛谷P3884 [JLOI2009] 二叉树问题(详解)c++
题目链接:P3884 [JLOI2009] 二叉树问题 - 洛谷 | 计算机科学教育新生态 1.题目解析 1:从8走向6的最短路径,向根节点就是向上走,从8到1会经过三条边,向叶节点就是向下走,从1走到6需要经过两条边,…...
《Foundation 起步》
《Foundation 起步》 引言 Foundation 是一个广泛使用的开源前端框架,由 ZURB 团队创建。它旨在帮助开发者构建响应式、可访问性和移动优先的网页。本文将为您提供一个全面的指南,帮助您从零开始学习并使用 Foundation。 Foundation 简介 什么是 Foundation? Foundatio…...

【hot100】刷题记录(6)-轮转数组
题目描述: 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转…...
Android createScaledBitmap与Canvas通过RectF drawBitmap生成马赛克/高斯模糊(毛玻璃)对比,Kotlin
Android createScaledBitmap与Canvas通过RectF drawBitmap生成马赛克/高斯模糊(毛玻璃)对比,Kotlin import android.graphics.Bitmap import android.graphics.BitmapFactory import android.graphics.Canvas import android.graphics.RectF …...
ThinkPad E480安装Ubuntu 18.04无线网卡驱动
个人博客地址:ThinkPad E480安装Ubuntu 18.04无线网卡驱动 | 一张假钞的真实世界 遗憾的是虽然下面的方法可以解决,但是内核升级后需要重新安装。 基本信息 Ubuntu 18.04ThinkPad E480使用下面的命令查看 Linux 内核: $ uname -r 5.0.0-3…...

自然语言处理——从原理、经典模型到应用
1. 概述 自然语言处理(Natural Language Processing,NLP)是一门借助计算机技术研究人类语言的科学,是人工智能领域的一个分支,旨在让计算机理解、生成和处理人类语言。其核心任务是将非结构化的自然语言转换为机器可以…...

Ollama 运行从 ModelScope 下载的 GGUF 格式的模型
本文系统环境 Windows 10 Ollama 0.5.7 Ollama 是什么? Ollama 可以让你快速集成和部署本地 AI 模型。它支持各种不同的 AI 模型,并允许用户通过简单的 API 进行调用 Ollama 的安装 Ollama 官网 有其下载及安装方法,非常简便 但如果希…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...