具身智能研究报告
参考:
(1)GTC大会&Figure:“具身智能”奇点已至
(2)2024中国具身智能创投报告
(3)2024年具身智能产业发展研究报告
(4)具身智能行业深度:发展趋势、市场机遇
1 “具身智能”奇点已至
英伟达机器人平台:
(1)感知层:Issac Perceptor & Issac Manipulator
(2)训练层:Issac SIM in Omniverse,机器人模拟工具包
(3)算力:Jetson Thor Soc芯片,提供800 Tflops的FP8算力,100GB以太网带宽
当前一体化大模型VLA的准确性较低,且存在实时性问题,因此短期内商业化的最佳方案仍然是VLM大模型+基础运控算法的结合

问题:短期内一体化大模型实时性困境难以逾越
分层式决控路径短期或将是人形机器人落地的较优选择
分层式决控相当于将两个成熟的部分进行结合,在高层级的VLM大模型输出的动作序列后进行解码并交由低层级的运动控制进行下一个环节,Figure 01也已证实该路径可用较短的时间能实现很强的效果,因此我们认为分层式决控路径是短期内人形机器人落地的较优选择。

长期来看,人形机器人需要依赖大模型能力的提升来实现通用化。目前VLM+运动控制算法大多需要用模仿学习,从演示中学习复杂的移动操作任务。目前面对未训练的场景和任务时,其任务完成的准确性和模型的泛化性存在较大质疑。一体化大模型作为端到端近似于人类思考方式的控制方法,是人形机器人发展最终所追求的目标。

Issac lab、sim对于人形从“机器人”到“具身智能”有极为重要的意义。
没有理解及交互能力的机器人无法通用,而初创型公司自行开发软件及大模型的难度极高,该平台有望催生出更多人形厂商,且我们不排除未来英伟达亲自下场实现“具身智能”。
2 具身智能创投报告



具身智能的训练方法:模仿学习和强化学习
模仿学习:智能体通过观察和模仿专家的行为来学习任务
优点:快速学习专家策略,无需复杂探索
缺点:学习的行为策略受限于专家策略,对于未知情况,泛化能力差
强化学习:智能体通过与环境的交互来学习最佳行为策略,以最大化某种累积奖励
优点:能够通过探索环境来学习未知策略,可处理高度不确定和动态变化的环境
缺点:需要大量探索和试错,学习缓慢,对于复杂任务,设计合适的奖励函数难度较高

3 具身智能产业发展研究报告
尽管人形机器人在实现具身智能方面具有显著优势,但并非所有具身智能系统都必须采用人形机器人的形态。可以根据具体任务和环境需求选择合适的智能实体形态。例如,在家庭中行驶并与人进行交互的宠物机器人、L4自动驾驶车等,本质上都具备“具身”和“智能”两种属性。

4 具身智能行业深度:发展趋势、市场机遇


细分应用场景
(1)工业制造领域:打破人机协作瓶颈,实现智能化柔性适配
(2)自动驾驶领域:适应开放交通环境,实现安全可靠智能驾驶
(3)物流运输领域:优化仓储物流产线,实现高效货物运转
(4)家庭服务领域:解放人类双手束缚,实现全场景的智能家务服务
(5)医疗康养领域:应对老龄化问题,实现拟人化交互服务
(6)其他领域:从赋能到变革,推动各行各业创新与转型
相关文章:
具身智能研究报告
参考: (1)GTC大会&Figure:“具身智能”奇点已至 (2)2024中国具身智能创投报告 (3)2024年具身智能产业发展研究报告 (4)具身智能行业深度:发展…...
Windows安装Milvus
安装Milvus 安装Docker前置条件: 安装Mlivus方案一方案二 Attu管理端 安装Docker 系统:Windows 11 家庭中文版 Mlivus:V2.3.0 Attu: V2.3.10 前置条件: 启用“适用于 Linux 的 Windows 子系统”可选功能,才能在 Win…...
Excel分区间统计分析(等步长、不等步长、多维度)
在数据分析过程中,可能会需要统计不同数据区间的人数、某个数据区间的平均值或者进行分组区间统计,本文从excel函数到数据透视表的方法,从简单需求到复杂需求,采用不同的方法进行讲解,尤其是通过数据透视表的强大功能大…...
宝塔mysql数据库容量限制_宝塔数据库mysql-bin.000001占用磁盘空间过大
磁盘空间占用过多,排查后发现网站/www/wwwroot只占用7G,/www/server占用却高达8G,再深入排查发现/www/server/data目录下的mysql-bin.000001和mysql-bin.000002两个日志文件占去了1.5G空间。 百度后学到以下知识,做个记录。 mysql…...
LeetCode 2412.完成所有交易的初始最少钱数:【年度巨献】举例说明(讲明白),由难至简(手脚不乱),附Python一行版
【LetMeFly】2412.完成所有交易的初始最少钱数:【年度巨献】举例说明(讲明白),由难至简(手脚不乱),附Python一行版 文章目录 【LetMeFly】2412.完成所有交易的初始最少钱数:【年度巨献】举例说明(讲明白),由难至简(手脚…...
多人-多agent协同可能会挑战维纳的反馈
在多人-多Agent协同系统中,维纳的经典反馈机制将面临新的挑战,而协同过程中的“算计”(策略性决策与协调)成为实现高效协作的核心。 1、非线性与动态性 维纳的反馈理论(尤其是在控制理论中)通常假设系统的动…...
Go学习:类型转换需注意的点 以及 类型别名
目录 1. 类型转换 2. 类型别名 1. 类型转换 在从前的学习中,知道布尔bool类型变量只有两种值true或false,C/C、Python、JAVA等编程语言中,如果将布尔类型bool变量转换为整型int变量,通常采用 “0为假,非0为真”的方…...
C语言中的局部变量和全局变量有什么区别?
在C语言中,局部变量和全局变量是两种具有不同作用域和存储期的变量。以下是它们之间的主要区别: 作用域 局部变量: 局部变量是在函数内部声明的变量。它们的作用域仅限于声明它们的函数内部。一旦函数执行完毕,局部变量就会超出…...
价值交换到底在交换什么
有人十多岁就很清醒,知道自己想要什么,要付出什么。有人20多岁清醒了,有人30多岁都不一定明白。 价值交换,四个字其实就可以解释大部分事情。价值交换和努力工作,勤劳没有任何关系。甚至努力和成功都不存在关系。 价值…...
C++传送锚点的内存寻址:内存管理
文章目录 1.C/C内存分布回顾2.C内存管理2.1 内存申请2.2 operator new与operator delete函数2.3 定位new表达式 3.关于内存管理的常见知识点3.1 malloc/free和new/delete的区别3.2 内存泄漏 希望读者们多多三连支持小编会继续更新你们的鼓励就是我前进的动力! 继C语…...
Prompt提示词完整案例:让chatGPT成为“书单推荐”的高手
大家好,我是老六哥,我正在共享使用AI提高工作效率的技巧。欢迎关注我,共同提高使用AI的技能,让AI成功你的个人助理。 许多人可能会跟老六哥一样,有过这样的体验:当我们遇到一个能力出众或对事物有独到见解的…...
基于django的智能停车场车辆管理深度学习车牌识别系统
完整源码项目包获取→点击文章末尾名片!...
【Proteus仿真】【51单片机】简易计算器系统设计
目录 一、主要功能 二、使用步骤 三、硬件资源 四、软件设计 五、实验现象 联系作者 一、主要功能 1、LCD1602液晶显示 2、矩阵按键 3、可以进行简单的加减乘除运算 4、最大 9999*9999 二、使用步骤 系统运行后,LCD1602显示数据,通过矩阵按键…...
洛谷P3884 [JLOI2009] 二叉树问题(详解)c++
题目链接:P3884 [JLOI2009] 二叉树问题 - 洛谷 | 计算机科学教育新生态 1.题目解析 1:从8走向6的最短路径,向根节点就是向上走,从8到1会经过三条边,向叶节点就是向下走,从1走到6需要经过两条边,…...
《Foundation 起步》
《Foundation 起步》 引言 Foundation 是一个广泛使用的开源前端框架,由 ZURB 团队创建。它旨在帮助开发者构建响应式、可访问性和移动优先的网页。本文将为您提供一个全面的指南,帮助您从零开始学习并使用 Foundation。 Foundation 简介 什么是 Foundation? Foundatio…...
【hot100】刷题记录(6)-轮转数组
题目描述: 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转…...
Android createScaledBitmap与Canvas通过RectF drawBitmap生成马赛克/高斯模糊(毛玻璃)对比,Kotlin
Android createScaledBitmap与Canvas通过RectF drawBitmap生成马赛克/高斯模糊(毛玻璃)对比,Kotlin import android.graphics.Bitmap import android.graphics.BitmapFactory import android.graphics.Canvas import android.graphics.RectF …...
ThinkPad E480安装Ubuntu 18.04无线网卡驱动
个人博客地址:ThinkPad E480安装Ubuntu 18.04无线网卡驱动 | 一张假钞的真实世界 遗憾的是虽然下面的方法可以解决,但是内核升级后需要重新安装。 基本信息 Ubuntu 18.04ThinkPad E480使用下面的命令查看 Linux 内核: $ uname -r 5.0.0-3…...
自然语言处理——从原理、经典模型到应用
1. 概述 自然语言处理(Natural Language Processing,NLP)是一门借助计算机技术研究人类语言的科学,是人工智能领域的一个分支,旨在让计算机理解、生成和处理人类语言。其核心任务是将非结构化的自然语言转换为机器可以…...
Ollama 运行从 ModelScope 下载的 GGUF 格式的模型
本文系统环境 Windows 10 Ollama 0.5.7 Ollama 是什么? Ollama 可以让你快速集成和部署本地 AI 模型。它支持各种不同的 AI 模型,并允许用户通过简单的 API 进行调用 Ollama 的安装 Ollama 官网 有其下载及安装方法,非常简便 但如果希…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
webpack面试题
面试题:webpack介绍和简单使用 一、webpack(模块化打包工具)1. webpack是把项目当作一个整体,通过给定的一个主文件,webpack将从这个主文件开始找到你项目当中的所有依赖文件,使用loaders来处理它们&#x…...
