当前位置: 首页 > news >正文

k均值聚类将数据分成多个簇

K-Means 聚类并将数据分成多个簇,可以使用以下方法:

实现思路

  1. 随机初始化 K 个聚类中心
  2. 计算每个点到聚类中心的距离
  3. 将点分配到最近的簇
  4. 更新聚类中心
  5. 重复上述过程直到收敛

完整代码:

import torch
import matplotlib.pyplot as pltdef kmeans(X, k, max_iters=100, tol=1e-4):"""使用 PyTorch 实现 K-Means 聚类,并返回聚类结果:param X: (n, d) 输入数据:param k: 簇的个数:param max_iters: 最大迭代次数:param tol: 收敛阈值:return: (最终聚类中心, 每个样本的簇索引)"""device = torch.device("cuda" if torch.cuda.is_available() else "cpu")X = X.to(device)n, d = X.shapeindices = torch.randperm(n)[:k]  # 随机选择 k 个数据点作为初始聚类中心centroids = X[indices].clone()for i in range(max_iters):distances = torch.cdist(X, centroids)  # 计算所有点到聚类中心的欧式距离cluster_assignments = torch.argmin(distances, dim=1)  # 分配每个点到最近的簇new_centroids = torch.stack([X[cluster_assignments == j].mean(dim=0) if (cluster_assignments == j).sum() > 0else centroids[j]  # 避免空簇for j in range(k)])shift = torch.norm(new_centroids - centroids, p=2)  # 计算变化量if shift < tol:print(f'K-Means 提前收敛于第 {i+1} 轮')breakcentroids = new_centroidsreturn centroids.cpu(), cluster_assignments.cpu()# 生成数据
torch.manual_seed(42)
X = torch.randn(200, 2)  # 200 个 2D 点
k = 3# 运行 K-Means
centroids, labels = kmeans(X, k)# 输出最终结果
print("最终聚类中心:")
print(centroids)# 统计每个簇的样本数量
for i in range(k):count = (labels == i).sum().item()print(f"簇 {i} 的数据点数量: {count}")# 可视化聚类结果
def plot_kmeans(X, labels, centroids, k):"""可视化 K-Means 聚类结果:param X: 数据点:param labels: 聚类标签:param centroids: 聚类中心:param k: 簇的个数"""X = X.numpy()labels = labels.numpy()centroids = centroids.numpy()plt.figure(figsize=(8, 6))# 画出每个簇的点colors = ['r', 'g', 'b', 'c', 'm', 'y', 'k']for i in range(k):plt.scatter(X[labels == i, 0], X[labels == i, 1],c=colors[i % len(colors)], label=f'Cluster {i}', alpha=0.6)# 画出聚类中心plt.scatter(centroids[:, 0], centroids[:, 1],c='black', marker='X', s=200, label='Centroids')plt.legend()plt.title("K-Means Clustering using PyTorch")plt.xlabel("Feature 1")plt.ylabel("Feature 2")plt.grid()plt.show()# 绘制聚类结果
plot_kmeans(X, labels, centroids, k)

备注:

  • 初始化
    • 采用 torch.randperm(n)[:k] 选择 k 个数据点作为初始聚类中心。
  • 计算距离
    • torch.cdist(X, centroids) 计算所有点到各个聚类中心的欧式距离。
  • 分配簇
    • torch.argmin(distances, dim=1) 选择最近的聚类中心。
  • 更新中心
    • X[cluster_assignments == j].mean(dim=0) 计算每个簇的新中心。
    • 如果某个簇为空,保持原来的中心不变,避免空簇问题。
  • 判断收敛
    • torch.norm(new_centroids - centroids, p=2) 计算中心点的移动量,若小于阈值 tol,则提前终止。
  • 按簇分类数据
    • clusters = [X[labels == i] for i in range(k)] 将数据划分到不同簇。

相关文章:

k均值聚类将数据分成多个簇

K-Means 聚类并将数据分成多个簇&#xff0c;可以使用以下方法&#xff1a; 实现思路 随机初始化 K 个聚类中心计算每个点到聚类中心的距离将点分配到最近的簇更新聚类中心重复上述过程直到收敛 完整代码&#xff1a; import torch import matplotlib.pyplot as pltdef kme…...

书生大模型实战营2

L0——入门岛 Python基础 Conda虚拟环境 虚拟环境是Python开发中不可或缺的一部分&#xff0c;它允许你在不同的项目中使用不同版本的库&#xff0c;避免依赖冲突。Conda是一个强大的包管理器和环境管理器。 创建新环境 首先&#xff0c;确保你已经安装了Anaconda或Minico…...

Excel 技巧21 - Excel中整理美化数据实例,Ctrl+T 超级表格(★★★)

本文讲Excel中如何整理美化数据的实例&#xff0c;以及CtrlT 超级表格的常用功能。 目录 1&#xff0c;Excel中整理美化数据 1-1&#xff0c;设置间隔行颜色 1-2&#xff0c;给总销量列设置数据条 1-3&#xff0c;根据总销量设置排序 1-4&#xff0c;加一个销售趋势列 2&…...

前端——js高级25.1.27

复习&#xff1a;对象 问题一&#xff1a; 多个数据的封装提 一个对象对应现实中的一个事物 问题二&#xff1a; 统一管理多个数据 问题三&#xff1a; 属性&#xff1a;组成&#xff1a;属性名属性值 &#xff08;属性名为字符串&#xff0c;属性值任意&#xff09; 方…...

学习数据结构(4)顺序表+单链表

1.顺序表算法题 题三&#xff1a; 2.单链表 &#xff08;1&#xff09;概念 链表是⼀种物理存储结构上非连续的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的指针链接次序实现的 &#xff08;2&#xff09;节点 节点的组成主要有两个部分&#xff1a;当前节点要保…...

GIS 中的 SQLAlchemy:空间数据与数据库之间的桥梁

利用 SQLAlchemy 在现代应用程序中无缝集成地理空间数据导言 地理信息系统&#xff08;GIS&#xff09;在管理城市规划、环境监测和导航系统等各种应用的空间数据方面发挥着至关重要的作用。虽然 PostGIS 或 SpatiaLite 等专业地理空间数据库在处理空间数据方面非常出色&#…...

python:斐索实验(Fizeau experiment)

斐索实验&#xff08;Fizeau experiment&#xff09;是在1851年由法国物理学家阿曼德斐索&#xff08;Armand Fizeau&#xff09;进行的一项重要实验&#xff0c;旨在测量光在移动介质中的传播速度。这项实验的结果对当时的物理理论产生了深远的影响&#xff0c;并且在后来的相…...

MySQL查询优化(三):深度解读 MySQL客户端和服务端协议

如果需要从 MySQL 服务端获得很高的性能&#xff0c;最佳的方式就是花时间研究 MySQL 优化和执行查询的机制。一旦理解了这些&#xff0c;大部分的查询优化是有据可循的&#xff0c;从而使得整个查询优化的过程更有逻辑性。下图展示了 MySQL 执行查询的过程&#xff1a; 客户端…...

vue3相关知识点

title: vue_1 date: 2025-01-28 12:00:00 tags:- 前端 categories:- 前端vue3 Webpack ~ vite vue3是基于vite创建的 vite 更快一点 一些准备工作 准备后如图所示 插件 Main.ts // 引入createApp用于创建应用 import {createApp} from vue // 引入App根组件 import App f…...

基于springboot+vue的流浪动物救助系统的设计与实现

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…...

MySQL(单表访问)

今天是新年&#xff0c;祝大家新年快乐&#xff0c;但是生活还是得继续。 后面也会持续更新&#xff0c;学到新东西会在其中补充。 建议按顺序食用&#xff0c;欢迎批评或者交流&#xff01; 缺什么东西欢迎评论&#xff01;我都会及时修改的&#xff01; 大部分截图和文章采…...

UE5.3 C++ CDO的初步理解

一.UObject UObject是所有对象的基类&#xff0c;往上还有UObjectBaseUtility。 注释&#xff1a;所有虚幻引擎对象的基类。对象的类型由基于 UClass 类来定义。 这为创建和使用UObject的对象提供了 函数&#xff0c;并且提供了应在子类中重写的虚函数。 /** * The base cla…...

SpringBoot 中的测试jar包knife4j(实现效果非常简单)

1、效果图 非常快的可以看见你实现的接口 路径http://localhost:8080/doc.html#/home 端口必须是自己的 2、实现效果 2.1、导入jar包 <dependency> <groupId>com.github.xiaoymin</groupId> <artifactId>knife4j-openapi3-jakarta-spring-boot-star…...

Java Web 开发基础介绍

Java学习资料 Java学习资料 Java学习资料 一、引言 在当今数字化时代&#xff0c;Web 应用无处不在。Java 凭借其强大的功能、良好的跨平台性和丰富的开发框架&#xff0c;成为 Web 开发领域的热门选择之一。Java Web 开发允许开发者构建动态、交互式的 Web 应用程序&#x…...

Android Studio:视图绑定的岁月变迁(2/100)

一、博文导读 本文是基于Android Studio真实项目&#xff0c;通过解析源码了解真实应用场景&#xff0c;写文的视角和读者是同步的&#xff0c;想到看到写到&#xff0c;没有上帝视角。 前期回顾&#xff0c;本文是第二期。 private Unbinder mUnbinder; 只是声明了一个 接口…...

LabVIEW春节快乐

尊敬的LabVIEW开发者与用户朋友们&#xff1a; 灵蛇舞动辞旧岁&#xff0c;春风送暖贺新年&#xff01;值此癸巳蛇年新春佳节来临之际&#xff0c;向每一位深耕LabVIEW开发领域的伙伴致以最诚挚的祝福&#xff1a;愿您与家人在新的一年里平安顺遂、阖家幸福&#xff0c;事业如…...

rewrite规则

NGINX 中 rewrite最后的标记含义&#xff1a; flag标记有&#xff1a; last 相当于Apache里的[L]标记&#xff0c;表示完成rewrite&#xff0c;匹配完&#xff0c;再向下匹配。地址栏会显示跳转后的地址 break 终止匹配, 不再匹配后面的rewrite规则&#xff0c;地址栏会显示跳…...

Android车机DIY开发之学习篇(七)NDK交叉工具构建

Android车机DIY开发之学习篇(七)NDK交叉工具构建 1.ubuntu安装GCC sudo apt-get update sudo apt-get install gcc g sudo gcc --version sudo g --version 2.测试GCC VSCODE中新建Hello.c编译 #include <stdio.h> int main(void) { printf(“Hello, this is a progr…...

【初/高中生讲机器学习】0. 本专栏 “食用” 指南——写在一周年之际⭐

创建时间&#xff1a;2025-01-27 首发时间&#xff1a;2025-01-29 最后编辑时间&#xff1a;2025-01-29 作者&#xff1a;Geeker_LStar 你好呀~这里是 Geeker_LStar 的人工智能学习专栏&#xff0c;很高兴遇见你~ 我是 Geeker_LStar&#xff0c;一名高一学生&#xff0c;热爱计…...

虚幻基础11:坐标计算旋转计算

能帮到你的话&#xff0c;就给个赞吧 &#x1f618; 文章目录 坐标line startget actor rotationget forward vector 旋转计算 坐标 ue中通常使用向量计算坐标。 line start 起始坐标点。 get actor rotation 获取旋转值&#xff1a; 当前角色朝向 get forward vector 获…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...