当前位置: 首页 > news >正文

[NOI1995] 石子合并

[NOI1995] 石子合并

题目描述

在一个圆形操场的四周摆放 N N N 堆石子,现要将石子有次序地合并成一堆,规定每次只能选相邻的 2 2 2 堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出一个算法,计算出将 N N N 堆石子合并成 1 1 1 堆的最小得分和最大得分。

输入格式

数据的第 1 1 1 行是正整数 N N N,表示有 N N N 堆石子。

2 2 2 行有 N N N 个整数,第 i i i 个整数 a i a_i ai 表示第 i i i 堆石子的个数。

输出格式

输出共 2 2 2 行,第 1 1 1 行为最小得分,第 2 2 2 行为最大得分。

样例 #1

样例输入 #1

4
4 5 9 4

样例输出 #1

43
54

提示

1 ≤ N ≤ 100 1\leq N\leq 100 1N100 0 ≤ a i ≤ 20 0\leq a_i\leq 20 0ai20

题目大意

在一个圆形操场的四周摆放了 N N N 堆石子。每次操作中,你只能选择相邻的两堆石子进行合并,并且合并的得分是这两堆石子的数量之和。最终的目标是将所有石子合并为一堆,要求你计算出合并过程中得到的最小得分和最大得分。

解题思路

这道题目涉及到动态规划(Dynamic Programming, DP)和圆形排列的处理。我们可以将圆形的石子排列“展平”成一条线,并使用动态规划解决合并过程中的最小得分和最大得分问题。具体步骤如下:

  1. 展平圆形结构:由于石子的排列是圆形的,我们可以通过将数组复制一遍并拼接起来,变成一个长度为 2 N 2N 2N 的数组。这样,我们就可以将圆形结构当作一个线性结构来处理。

  2. 动态规划状态定义

    • dp1[l][r]:表示在区间 [ l , r ] [l, r] [l,r] 内合并所有石子的最小得分。
    • dp2[l][r]:表示在区间 [ l , r ] [l, r] [l,r] 内合并所有石子的最大得分。
  3. 状态转移方程

    • 计算最小得分时,我们可以选择区间内的任意一个位置进行合并,更新dp1[l][r]
      [
      dp1[l][r] = \min(dp1[l][r], dp1[l][k] + dp1[k+1][r] + sum[r] - sum[l-1])
      ]
    • 同样地,计算最大得分时更新dp2[l][r]
      [
      dp2[l][r] = \max(dp2[l][r], dp2[l][k] + dp2[k+1][r] + sum[r] - sum[l-1])
      ]
  4. 前缀和的计算:为了更快速地计算区间和,我们可以使用一个sum数组,其中sum[i]表示从第一个石子到第 i i i 个石子的总和。

  5. 最终结果:由于是一个环形结构,我们需要对dp1dp2中所有可能的区间(长度为 N N N 的子区间)计算最小值和最大值。

代码分析

#include <bits/stdc++.h>
#include <iostream>
#include <algorithm>
using namespace std;const int inf = 1e9 + 7;
const int N = 300 + 10;int n;
int dp1[N][N];  // 最小得分 DP
int dp2[N][N];  // 最大得分 DP
int sum[N];     // 前缀和数组
vector<int> v(N);  // 石子的数量void clear() {for (int i = 0; i < N; ++i) {for (int j = i; j < N; ++j) {if (i == j) {dp1[i][j] = 0;dp2[i][j] = 0;} else {dp1[i][j] = inf;dp2[i][j] = -inf;}}}
}void solved() {clear();cin >> n;  // 读入石子的堆数for (int i = 1; i <= n; ++i) {cin >> v[i];sum[i] = sum[i - 1] + v[i];  // 计算前缀和}// 扩展石子数组,处理圆形结构for (int i = n + 1; i <= 2 * n; ++i) {v[i] = v[i - n];sum[i] = sum[i - 1] + v[i];}// 计算 dp 数组for (int len = 2; len <= n; ++len) {  // 长度从2到nfor (int l = 1; l <= 2 * n - len + 1; ++l) {  // 枚举区间起始位置int r = l + len - 1;  // 区间的右端for (int k = l; k < r; ++k) {  // 枚举分割点dp1[l][r] = min(dp1[l][r], dp1[l][k] + dp1[k + 1][r] + sum[r] - sum[l - 1]);dp2[l][r] = max(dp2[l][r], dp2[l][k] + dp2[k + 1][r] + sum[r] - sum[l - 1]);}}}int minn = inf, maxx = -inf;for (int l = 1; l <= n; ++l) {  // 最终结果遍历所有可能的起始位置minn = min(minn, dp1[l][l + n - 1]);maxx = max(maxx, dp2[l][l + n - 1]);}cout << minn << endl;  // 输出最小得分cout << maxx << endl;  // 输出最大得分
}signed main() {ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);int T = 1;while (T--) {solved();}
}

代码分析

  1. 初始化和前缀和:首先初始化 dp1dp2 数组,dp1[i][j] 用于保存区间 [ i , j ] [i, j] [i,j] 的最小合并得分,dp2[i][j] 用于保存区间 [ i , j ] [i, j] [i,j] 的最大合并得分。我们也通过 sum 数组计算了从第一个石子到第 i i i 个石子的前缀和。

  2. 展开圆形数组:由于问题中石子是圆形排列的,我们通过将数组从头到尾复制一次,形成一个长度为 2 N 2N 2N 的新数组 v,并且更新对应的前缀和 sum

  3. 动态规划计算:通过枚举区间长度 len 和起始位置 l,以及每个区间内的分割点 k,使用状态转移方程更新 dp1dp2 数组。最终,通过遍历所有可能的区间,找到最小得分和最大得分。

  4. 时间复杂度:由于有三重循环(区间长度、区间起点、分割点),时间复杂度为 O ( N 3 ) O(N^3) O(N3)。对于 N ≤ 100 N \leq 100 N100,这种复杂度是可以接受的。

总结

这个问题的核心在于如何利用动态规划求解合并石子的最小和最大得分。通过将圆形结构展开为线性结构,可以简化问题的求解。算法通过动态规划计算每个区间的最小和最大得分,并最终遍历所有可能的区间来求解答案。

相关文章:

[NOI1995] 石子合并

[NOI1995] 石子合并 题目描述 在一个圆形操场的四周摆放 N N N 堆石子&#xff0c;现要将石子有次序地合并成一堆&#xff0c;规定每次只能选相邻的 2 2 2 堆合并成新的一堆&#xff0c;并将新的一堆的石子数&#xff0c;记为该次合并的得分。 试设计出一个算法,计算出将 …...

真正的智能与那只蝴蝶

“蝴蝶效应”可以展开为对智能本质与大算力关系的追问&#xff0c;其中“蝴蝶”作为隐喻可能指向多重维度——从混沌理论的“蝴蝶效应”到庄子“物我两忘”的蝴蝶之梦。这种并置本身暗示了智能与宇宙秩序、认知边界之间的深刻张力。以下从三个层面展开分析&#xff1a;一、混沌…...

C++小病毒-1.0勒索(更新次数:2)

内容供学习使用,不得转卖,代码复制后请1小时内删除,此代码会危害计算机安全,谨慎操作 在C20环境下,并在虚拟机里运行此代码!&#xff0c;病毒带来后果自负! 使用时请删除在main()里的注释,并修改位置至C:\\(看我代码注释)//可以改成WIN Main() #include <iostream> #i…...

Node.js 的底层原理

Node.js 的底层原理 1. 事件驱动和非阻塞 I/O Node.js 基于 Chrome V8 引擎&#xff0c;使用 JavaScript 作为开发语言。它采用事件驱动和非阻塞 I/O 模型&#xff0c;使其轻量且高效。通过 libuv 库实现跨平台的异步 I/O&#xff0c;包括文件操作、网络请求等。 2. 单线程事…...

基于Django的豆瓣影视剧推荐系统的设计与实现

【Django】基于Django的豆瓣影视剧推荐系统的设计与实现&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统采用了Python作为后端开发语言&#xff0c;采用Django作为后端架构&#xff0c;结…...

P10638 BZOJ4355 Play with sequence Solution

Description 给定 a ( a 1 , a 2 , ⋯ , a n ) a(a_1,a_2,\cdots,a_n) a(a1​,a2​,⋯,an​)&#xff0c;有 m m m 个操作&#xff0c;分以下三种&#xff1a; assign ⁡ ( l , r , k ) \operatorname{assign}(l,r,k) assign(l,r,k)&#xff1a;对每个 i ∈ [ l , r ] i \…...

MySQL误删数据怎么办?

文章目录 1. 从备份恢复数据2. 通过二进制日志恢复数据3. 使用数据恢复工具4. 利用事务回滚恢复数据5. 预防误删数据的策略总结 在使用MySQL进行数据管理时&#xff0c;误删数据是一个常见且具有高风险的操作。无论是因为操作失误、系统故障&#xff0c;还是不小心执行了删除命…...

项目测试之MockMvc

文章目录 基础基础概念Mockxxx一般实现文件位置 实战MockMvc与Test注解不兼容RequestParams参数RequestBody参数 基础 基础概念 定义&#xff1a;是Spring框架提供的一种用于测试Spring MVC控制器的工具&#xff0c;它允许开发者在不启动完整的web服务器的情况下&#xff0c;…...

Unbutu虚拟机+eclipse+CDT编译调试环境搭建

问题1: 安装CDT&#xff0c;直接Help->eclipse Market space-> 搜cdt , install&#xff0c;等待重启即可. 问题2&#xff1a;C变量不识别vector ’could not be resolved 这是库的头文件没加好&#xff0c;右键Properties->C Build->Enviroment&#xff0c;增加…...

时间轮:XXL-JOB 高效、精准定时任务调度实现思路分析

大家好&#xff0c;我是此林。 定时任务是我们项目中经常会遇到的一个场景。那么如果让我们手动来实现一个定时任务框架&#xff0c;我们会怎么做呢&#xff1f; 1. 基础实现&#xff1a;简单的线程池时间轮询 最直接的方式是创建一个定时任务线程池&#xff0c;用户每提交一…...

CTF-web: Python YAML反序列化利用

PyYAML存在以下几个特殊标签,如果这些标签被不安全的解析,会造成解析漏洞 从 PyYaml 版本 6.0 开始&#xff0c;load 的默认加载器已切换到 SafeLoader&#xff0c;以降低远程代码执行的风险。更新后易受攻击的是 yaml.unsafe_load 和 yaml.load(input, Loaderyaml.UnsafeLoade…...

代码随想录算法训练营第三十八天-动态规划-完全背包-139.单词拆分

类似于回溯算法中的拆分回文串题目是要求拆分字符串&#xff0c;问这些字符串是否出现在字典里。但这道题可以反着来考虑&#xff0c;从字典中的单词能不能组成所给定的字符串 如果这样考虑&#xff0c; 这个字符串就背包&#xff0c;容器字典中的单词就是一个一个物品问题就转…...

ML基础-Jupyter notebook中的魔法命令

在 Jupyter Notebook 或 IPython 环境中&#xff0c;“魔法命令”&#xff08;Magic Commands&#xff09;是一些以百分号&#xff08;%&#xff09;或惊叹号&#xff08;!)开头的特殊命令&#xff0c;用于执行一些与代码运行环境相关的操作&#xff0c;而不仅仅是执行普通的 P…...

Zookeeper入门部署(单点与集群)

本篇文章基于docker方式部署zookeeper集群&#xff0c;请先安装docker 目录 1. docker初期准备 2.启动zookeeper 2.1 单点部署 2.2 集群部署 3. Linux脚本实现快速切换启动关闭 1. docker初期准备 拉取zookeeper镜像 docker pull zookeeper:3.5.6 如果拉取时间过长&#xf…...

Kafa分区策略实现

引言 Kafka 的分区策略决定了生产者发送的消息会被分配到哪个分区中&#xff0c;合理的分区策略有助于实现负载均衡、提高消息处理效率以及满足特定的业务需求。 轮询策略&#xff08;默认&#xff09; 轮询策略是 Kafka 默认的分区策略&#xff08;当消息没有指定键时&…...

Pyside/Pyqt中QWebEngineView和QWebEnginePage的区别

在 PySide/Qt 的 WebEngine 模块中&#xff0c;QWebEngineView 和 QWebEnginePage 是两个紧密相关但职责不同的类。以下是它们的核心区别和关系&#xff1a; 1. 职责区分 类名核心职责模块归属QWebEngineView作为可视化的窗口部件&#xff08;Widget&#xff09;&#xff0c;负…...

Kafka的内部通信协议

引言 kafka内部用到的常见协议和优缺点可以看看原文 Kafka用到的协议 本文奖详细探究kafka核心通信协议和高性能的关键 网络层通信的实现 基于 Java NIO&#xff1a;Kafka 的网络通信层主要基于 Java NIO 来实现&#xff0c;这使得它能够高效地处理大量的连接和数据传输。…...

强大到工业层面的软件

电脑数据删不干净&#xff0c;简直是一种让人抓狂的折磨&#xff01;明明已经把文件扔进了回收站&#xff0c;清空了&#xff0c;可那些残留的数据就像牛皮癣一样&#xff0c;怎么也除不掉。这种烦恼简直无处不在&#xff0c;让人从头到脚都感到无比烦躁。 首先&#xff0c;心…...

数据分析和AI丨应对AI实施挑战,工程领域AI应用的五大方法

工程领域的人工智能 &#xff08;AI&#xff09; 已经开始发挥价值&#xff0c;低代码和无代码工具正在使曾经仅属于专业数据科学家的 AI 能力变得大众化。 然而&#xff0c;并非工程领域的每个人都能从中受益&#xff0c;使用新的便捷的 AI 工具提高工作效率并不难&#xff0c…...

54. UDP协议

UDP协议 UDP&#xff08;User Datagram Protocol&#xff0c;用户数据报协议&#xff09;是一个无连接的传输层协议&#xff0c;它提供简单的、不可靠的信息传送服务。与TCP&#xff08;传输控制协议&#xff09;不同&#xff0c;UDP不提供数据包的排序、错误检查&#xff08;仅…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...