当前位置: 首页 > news >正文

智能家居监控系统数据收集积压优化

亮点:RocketMQ 消息大量积压问题的解决

   假设我们正在开发一个智能家居监控系统。该系统从数百万个智能设备(如温度传感器、安全摄像头、烟雾探测器等)收集数据,并通过 RocketMQ 将这些数据传输到后端进行处理和分析。

   在某些情况下,比如突发事件或系统升级时,可能会导致消息处理速度跟不上消息生产速度,从而造成消息积压。

要解决这个问题,我们可以采取以下策略:

  1. 增加消费者数量
  2. 提高单个消费者的处理能力
  3. 实现动态扩缩容
  4. 消息优先级处理
  5. 临时存储和批量处理

下面是具体的实现方案和代码示例:

消费者配置

@Configuration  
public class RocketMQConsumerConfig {  @Value("${rocketmq.name-server}")  private String nameServer;  @Value("${rocketmq.consumer.group}")  private String consumerGroup;  @Bean  public DefaultMQPushConsumer deviceDataConsumer() throws MQClientException {  DefaultMQPushConsumer consumer = new DefaultMQPushConsumer(consumerGroup);  consumer.setNamesrvAddr(nameServer);  consumer.subscribe("DEVICE_DATA_TOPIC", "*");  consumer.setConsumeThreadMin(20);  consumer.setConsumeThreadMax(64);  consumer.setConsumeMessageBatchMaxSize(1);  consumer.registerMessageListener(new MessageListenerConcurrently() {  @Override  public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {  for (MessageExt msg : msgs) {  processMessage(msg);  }  return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;  }  });  return consumer;  }  private void processMessage(MessageExt msg) {  // 处理消息的逻辑  }  
}
  1. 动态扩缩容服务

@Service  
public class ConsumerScalingService {  @Autowired  private DefaultMQPushConsumer deviceDataConsumer;  public void scaleConsumers(int threadCount) {  deviceDataConsumer.setConsumeThreadMin(threadCount);  deviceDataConsumer.setConsumeThreadMax(threadCount);  }  
}
  1. 消息优先级处理

@Service  
public class PriorityMessageProcessor {  @Autowired  private DeviceDataRepository deviceDataRepository;  public void processMessage(MessageExt msg) {  DeviceData data = parseMessage(msg);  if (isHighPriority(data)) {  processHighPriorityData(data);  } else {  deviceDataRepository.save(data);  }  }  private boolean isHighPriority(DeviceData data) {  // 判断是否为高优先级数据,如安全警报  return data.getType().equals(DeviceDataType.SECURITY_ALERT);  }  private void processHighPriorityData(DeviceData data) {  // 立即处理高优先级数据  }  
}

解决方案说明:

  1. 增加消费者数量:通过 ConsumerScalingService 动态调整消费者线程数。
  2. 提高单个消费者的处理能力:在 RocketMQConsumerConfig 中配置了较大的并发消费线程数。
  3. 实现动态扩缩容:MessageAccumulationMonitor 服务监控消息积压情况,并根据需要动态调整消费者数量。
  4. 消息优先级处理:PriorityMessageProcessor 服务对高优先级消息(如安全警报)进行优先处理。
  5. 临时存储和批量处理:对于无法及时处理的消息,先存储到本地数据库,然后通过 BatchProcessingService 定期批量处理。
  6. 监控和告警:MessageAccumulationMonitor 服务监控消息积压情况,当积压严重时发送告警。

通过以上方案,我们能够有效地处理 RocketMQ 消息积压问题,确保智能家居监控系统能够及时处理大量设备数据,特别是在数据突增的情况下。这个方案不仅提高了系统的吞吐量,还保证了关键数据的及时处理,同时通过动态扩缩容和批量处理来优化资源使用。


系列阅读

  1. 可复用架构:如何实现高层次的复用?
  2. 数字化-落地路径与数据中台
  3. 电商系统的分布式事务调优

相关文章:

智能家居监控系统数据收集积压优化

亮点&#xff1a;RocketMQ 消息大量积压问题的解决 假设我们正在开发一个智能家居监控系统。该系统从数百万个智能设备&#xff08;如温度传感器、安全摄像头、烟雾探测器等&#xff09;收集数据&#xff0c;并通过 RocketMQ 将这些数据传输到后端进行处理和分析。 在某些情况下…...

详解python的单例模式

单例模式是一种设计模式&#xff0c;它确保一个类只有一个实例&#xff0c;并提供一个全局访问点来获取这个实例。在Python中实现单例模式有多种方法&#xff0c;下面我将详细介绍几种常见的实现方式。 1. 使用模块 Python的模块天然就是单例的&#xff0c;因为模块在第一次导…...

momask-codes 部署踩坑笔记

目录 依赖项 t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_rvq6ns 推理代码完善&#xff1a; 代码地址&#xff1a; https://github.com/EricGuo5513/momask-codes 依赖项 pip install numpy1.23 matplotlib 必须指定版本&#xff1a;pip install matplotlib3.3.4 t2m_nlayer…...

H3CNE-31-BFD

Bidirectional Forwarding Dection&#xff0c;双向转发检查 作用&#xff1a;毫秒级故障检查&#xff0c;通常结合三层协议&#xff08;静态路由、vrrp、ospf、BGP等&#xff09;&#xff0c;实现链路故障快速检查。 BFD配置示例 没有中间的SW&#xff0c;接口down&#xff…...

蓝桥备赛指南(5)

queue队列 queue是一种先进先出的数据结构。它提供了一组函数来操作和访问元素&#xff0c;但它的功能相对较简单&#xff0c;queue函数的内部实现了底层容器来存储元素&#xff0c;并且只能通过特定的函数来访问和操作元素。 queue函数的常用函数 1.push()函数&#xff1a;…...

讯飞智作 AI 配音技术浅析(一)

一、核心技术 讯飞智作 AI 配音技术作为科大讯飞在人工智能领域的重要成果&#xff0c;融合了多项前沿技术&#xff0c;为用户提供了高质量的语音合成服务。其核心技术主要涵盖以下几个方面&#xff1a; 1. 深度学习与神经网络 讯飞智作 AI 配音技术以深度学习为核心驱动力&…...

MySQL(高级特性篇) 14 章——MySQL事务日志

事务有4种特性&#xff1a;原子性、一致性、隔离性和持久性 事务的隔离性由锁机制实现事务的原子性、一致性和持久性由事务的redo日志和undo日志来保证&#xff08;1&#xff09;REDO LOG称为重做日志&#xff0c;用来保证事务的持久性&#xff08;2&#xff09;UNDO LOG称为回…...

openRv1126 AI算法部署实战之——TensorFlow TFLite Pytorch ONNX等模型转换实战

Conda简介 查看当前系统的环境列表 conda env list base为基础环境 py3.6-rknn-1.7.3为模型转换环境&#xff0c;rknn-toolkit版本V1.7.3&#xff0c;python版本3.6 py3.6-tensorflow-2.5.0为tensorflow模型训练环境&#xff0c;tensorflow版本2.5.0&#xff0c;python版本…...

【Redis】常见面试题

什么是Redis&#xff1f; Redis 和 Memcached 有什么区别&#xff1f; 为什么用 Redis 作为 MySQL 的缓存&#xff1f; 主要是因为Redis具备高性能和高并发两种特性。 高性能&#xff1a;MySQL中数据是从磁盘读取的&#xff0c;而Redis是直接操作内存&#xff0c;速度相当快…...

每日 Java 面试题分享【第 17 天】

欢迎来到每日 Java 面试题分享栏目&#xff01; 订阅专栏&#xff0c;不错过每一天的练习 今日分享 3 道面试题目&#xff01; 评论区复述一遍印象更深刻噢~ 目录 问题一&#xff1a;Java 中的访问修饰符有哪些&#xff1f;问题二&#xff1a;Java 中静态方法和实例方法的区…...

「全网最细 + 实战源码案例」设计模式——桥接模式

核心思想 桥接模式&#xff08;Bridge Pattern&#xff09;是一种结构型设计模式&#xff0c;将抽象部分与其实现部分分离&#xff0c;使它们可以独立变化。降低代码耦合度&#xff0c;避免类爆炸&#xff0c;提高代码的可扩展性。 结构 1. Implementation&#xff08;实现类…...

JavaScript 进阶(上)

作用域 局部作用域 局部作用域分为函数作用域和块作用域。 函数作用域&#xff1a; 在函数内部声明的变量只能在函数内部被访问&#xff0c;外部无法直接访问。 总结&#xff1a; 函数内部声明的变量&#xff0c;在函数外部无法被访问 函数的参数也是函数内部的局部变量 …...

【编译原理实验二】——自动机实验:NFA转DFA并最小化

本篇适用于ZZU的编译原理课程实验二——自动机实验&#xff1a;NFA转DFA并最小化&#xff0c;包含了实验代码和实验报告的内容&#xff0c;读者可根据需要参考完成自己的程序设计。 如果是ZZU的学弟学妹看到这篇&#xff0c;那么恭喜你&#xff0c;你来对地方啦&#xff01; 如…...

深入探讨:服务器如何响应前端请求及后端如何查看前端提交的数据

深入探讨&#xff1a;服务器如何响应前端请求及后端如何查看前端提交的数据 一、服务器如何响应前端请求 前端与后端的交互主要通过 HTTP 协议实现。以下是详细步骤&#xff1a; 1. 前端发起 HTTP 请求 GET 请求&#xff1a;用于从服务器获取数据。POST 请求&#xff1a;用…...

如何利用Docker和.NET Core实现环境一致性、简化依赖管理、快速部署与扩展,同时提高资源利用率、确保安全性和生态系统支持

目录 1. 环境一致性 2. 简化依赖管理 3. 快速部署与扩展 4. 提高资源利用率 5. 确保安全性 6. 生态系统支持 总结 使用 Docker 和 .NET Core 结合&#xff0c;可以有效地实现环境一致性、简化依赖管理、快速部署与扩展&#xff0c;同时提高资源利用率、确保安全性和生态…...

@Inject @Qualifier @Named

Inject Qualifier Named 在依赖注入&#xff08;DI&#xff09;中&#xff0c;Inject、Qualifier 和 Named 是用于管理对象创建和绑定的关键注解。以下是它们的用途、依赖配置和代码示例的详细说明&#xff1a; 1. 注解的作用 Inject&#xff1a;标记需要注入的构造函数、字段…...

创建 priority_queue - 进阶(内置类型)c++

内置类型就是 C 提供的数据类型&#xff0c;⽐如 int 、 double 、 long long 等。以 int 类型为例&#xff0c;分 别创建⼤根堆和⼩根堆。 这种写法意思是&#xff0c;我要告诉这个优先级队列要建一个什么样的堆&#xff0c;第一个int是要存什么数据类型&#xff0c;vecto…...

2. Java-MarkDown文件解析-工具类

2. Java-MarkDown文件解析-工具类 1. 思路 读取markdown文件的内容&#xff0c;根据markdown的语法进行各个类型语法的解析。引入工具类 commonmark 和 commonmark-ext-gfm-tables进行markdown语法解析。 2. 工具类 pom.xml <!-- commonmark 解析markdown --> <d…...

动态规划DP 最长上升子序列模型 登山(题目分析+C++完整代码)

概览检索 动态规划DP 最长上升子序列模型 登山 原题链接 AcWing 1014. 登山 题目描述 五一到了&#xff0c;ACM队组织大家去登山观光&#xff0c;队员们发现山上一共有N个景点&#xff0c;并且决定按照顺序来浏览这些景点&#xff0c;即每次所浏览景点的编号都要大于前一个…...

css-设置元素的溢出行为为可见overflow: visible;

1.前言 overflow 属性用于设置当元素的内容溢出其框时如何处理。 2. overflow overflow 属性的一些常见值&#xff1a; 1 visible&#xff1a;默认值。内容不会被剪裁&#xff0c;会溢出元素的框。 2 hidden&#xff1a;内容会被剪裁&#xff0c;不会显示溢出的部分。 3 sc…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...