当前位置: 首页 > news >正文

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.18 逻辑运算引擎:数组条件判断的智能法则

在这里插入图片描述

1.18 逻辑运算引擎:数组条件判断的智能法则

1.18.1 目录

逻辑运算引擎:数组条件判断的智能法则
引言
短路逻辑的向量化替代方案
复合条件表达式的优化编写
掩码操作在图像分割中的应用
多条件并行评估的性能测试
总结
参考文献

1.18.2 短路逻辑的向量化替代方案

在Python中,短路逻辑(short-circuit logic)是一种常用的逻辑运算方式,但在NumPy数组中使用短路逻辑可能会导致性能问题。向量化操作可以提供更高效的解决方案。

标量条件
广播机制
数组条件
逻辑运算
布尔掩码
复合条件
按位与
按位或
结果掩码
数据筛选
1.18.2.1 短路逻辑的原理

短路逻辑的基本原理是:在逻辑表达式中,如果前一个条件的评估结果已经可以确定最终结果,则不会继续评估后续的条件。例如,“and”运算中,如果第一个条件为False,则后续条件不会被评估。

1.18.2.2 向量化逻辑运算的实现

NumPy提供了向量化逻辑运算的方法,可以在整个数组上进行高效的逻辑运算。

1.18.2.2.1 逻辑运算的广播规则图示
NumPy数组逻辑运算
广播规则
形状对齐
逐元素运算
结果数组
1.18.2.2.2 代码示例
import numpy as np# 创建两个NumPy数组
array1 = np.array([1, 2, 3, 4, 5])
array2 = np.array([3, 4, 5, 6, 7])# 使用向量化逻辑运算
result = np.logical_and(array1 > 2, array2 < 6)  # 条件判断# 打印结果
print(result)  # 输出: [False False  True False False]

1.18.3 复合条件表达式的优化编写

在实际应用中,经常需要编写多个条件的复合表达式。优化复合条件表达式可以显著提高代码的可读性和性能。

1.18.3.1 复合条件表达式的常见问题
  • 可读性问题:多个条件嵌套会导致代码难以阅读。
  • 性能问题:逐元素判断条件会导致计算效率低下。
1.18.3.2 优化方法
  • 使用布尔数组:通过布尔数组进行条件判断,提高代码的可读性和性能。
  • 使用numexpr:加速复杂表达式的计算。
1.18.3.2.1 使用布尔数组
import numpy as np# 创建NumPy数组
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])# 生成布尔数组
condition1 = data > 3
condition2 = data < 8# 使用布尔数组进行复合条件判断
result = np.logical_and(condition1, condition2)# 打印结果
print(result)  # 输出: [False False False  True  True  True  True False False False]
1.18.3.2.2 使用numexpr加速复杂表达式
import numpy as np
import numexpr as ne# 创建NumPy数组
data1 = np.random.randn(1000000)
data2 = np.random.randn(1000000)# 生成复合条件表达式
result = ne.evaluate('(data1 > 2) & (data2 < 6)')  # 使用numexpr加速# 打印结果
print(result)

1.18.4 掩码操作在图像分割中的应用

在图像处理中,掩码操作是一种常用的方法,用于提取图像中的感兴趣区域(ROI)。

1.18.4.1 医学图像ROI提取完整案例

假设我们有一个医学图像,需要提取其中的病变区域。我们可以通过生成掩码并应用掩码来实现这一点。

1.18.4.1.1 读取图像
import numpy as np
import matplotlib.pyplot as plt
from skimage import io, color# 读取医学图像
image = io.imread('medical_image.jpg')
image_gray = color.rgb2gray(image)  # 转换为灰度图像# 绘制原始图像
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(image, cmap='gray')
plt.title('原始图像')
1.18.4.1.2 生成掩码
# 生成掩码条件
mask = (image_gray > 0.2) & (image_gray < 0.8)# 绘制掩码
plt.subplot(1, 2, 2)
plt.imshow(mask, cmap='gray')
plt.title('掩码')
plt.show()
1.18.4.1.3 应用掩码
# 应用掩码提取ROI
image_roi = np.where(mask, image_gray, 0)# 绘制ROI图像
plt.figure(figsize=(6, 6))
plt.imshow(image_roi, cmap='gray')
plt.title('ROI图像')
plt.show()

1.18.5 多条件并行评估的性能测试

多条件并行评估可以显著提高代码的执行效率。我们将通过一个性能测试来验证这一点。

1.18.5.1 测试设置
  • 数据规模:1000万数据点
  • 测试方法:使用NumPy的向量化逻辑运算和逐元素逻辑运算进行对比测试。
1.18.5.1.1 代码示例
import numpy as np
import time# 生成大规模数据
data = np.random.randn(10000000)# 逐元素逻辑运算
def sequential_evaluation(data):result = []for value in data:if value > 0.5 and value < 1.5:result.append(True)else:result.append(False)return np.array(result)# 向量化逻辑运算
def vectorized_evaluation(data):return (data > 0.5) & (data < 1.5)# 测试逐元素逻辑运算
start_time = time.time()
result_sequential = sequential_evaluation(data)
end_time = time.time()
time_sequential = end_time - start_time
print(f"逐元素逻辑运算时间: {time_sequential:.6f}秒")# 测试向量化逻辑运算
start_time = time.time()
result_vectorized = vectorized_evaluation(data)
end_time = time.time()
time_vectorized = end_time - start_time
print(f"向量化逻辑运算时间: {time_vectorized:.6f}秒")# 生成结果图
import matplotlib.pyplot as pltplt.bar(['逐元素逻辑运算', '向量化逻辑运算'], [time_sequential, time_vectorized])
plt.xlabel('方法')
plt.ylabel('时间(秒)')
plt.title('多条件并行评估的性能对比')
plt.show()

1.18.6 逻辑运算的GPU加速方案

对于大规模数据的逻辑运算,可以使用GPU进行加速。我们将介绍如何使用CuPy库在GPU上进行逻辑运算。

1.18.6.1 CuPy库简介

CuPy是一个兼容NumPy的库,支持在GPU上进行高效的数组操作。

1.18.6.1.1 代码示例
import numpy as np
import cupy as cp
import time# 生成大规模数据
data = np.random.randn(10000000)# 将数据转移到GPU
gpu_data = cp.array(data)# 逐元素逻辑运算
def sequential_evaluation(data):result = []for value in data:if value > 0.5 and value < 1.5:result.append(True)else:result.append(False)return np.array(result)# 向量化逻辑运算
def vectorized_evaluation(data):return (data > 0.5) & (data < 1.5)# GPU向量化逻辑运算
def gpu_vectorized_evaluation(gpu_data):return (gpu_data > 0.5) & (gpu_data < 1.5)# 测试逐元素逻辑运算
start_time = time.time()
result_sequential = sequential_evaluation(data)
end_time = time.time()
time_sequential = end_time - start_time
print(f"逐元素逻辑运算时间: {time_sequential:.6f}秒")# 测试NumPy向量化逻辑运算
start_time = time.time()
result_vectorized = vectorized_evaluation(data)
end_time = time.time()
time_vectorized = end_time - start_time
print(f"NumPy向量化逻辑运算时间: {time_vectorized:.6f}秒")# 测试CuPy向量化逻辑运算
start_time = time.time()
result_gpu_vectorized = gpu_vectorized_evaluation(gpu_data)
end_time = time.time()
time_gpu_vectorized = end_time - start_time
print(f"CuPy向量化逻辑运算时间: {time_gpu_vectorized:.6f}秒")# 生成结果图
import matplotlib.pyplot as pltplt.bar(['逐元素逻辑运算', 'NumPy向量化逻辑运算', 'CuPy向量化逻辑运算'], [time_sequential, time_vectorized, time_gpu_vectorized])
plt.xlabel('方法')
plt.ylabel('时间(秒)')
plt.title('逻辑运算的性能对比')
plt.show()

1.18.7 总结

本文详细介绍了NumPy数组条件判断的智能法则,包括短路逻辑的向量化替代方案、复合条件表达式的优化编写、掩码操作在图像分割中的应用、多条件并行评估的性能测试以及逻辑运算的GPU加速方案。通过这些内容,希望读者可以更好地理解和应用NumPy的逻辑运算功能,从而在实际项目中提高代码效率。

1.18.8 参考文献

参考资料名链接
NumPy官方文档https://numpy.org/doc/stable/
Matplotlib官方文档https://matplotlib.org/
Scikit-Image官方文档https://scikit-image.org/docs/stable/
numexpr官方文档https://numexpr.readthedocs.io/en/latest/
CuPy官方文档https://docs.cupy.dev/en/latest/
短路逻辑与向量化操作https://eli.thegreenplace.net/2015/understanding-short-circuiting-with-and-and-or-in-python/
布尔数组与条件判断https://numpy.org/doc/stable/user/basics.indexing.html#boolean-or-mask-index-arrays
图像处理与ROI提取https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_histograms/py_histogram_equalization/py_histogram_equalization.html
NumPy性能优化https://realpython.com/faster-numpy-arrays-cython/
CUDA编程入门https://developer.nvidia.com/blog/getting-started-cuda-python/
GPU加速的Python库https://www.tensorflow.org/install/gpu
数据可视化https://seaborn.pydata.org/
数据科学手册https://jakevdp.github.io/PythonDataScienceHandbook/
医学图像处理https://pyradiomics.readthedocs.io/en/latest/
并行计算https://docs.ray.io/en/latest/

这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。

相关文章:

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.18 逻辑运算引擎:数组条件判断的智能法则

1.18 逻辑运算引擎&#xff1a;数组条件判断的智能法则 1.18.1 目录 #mermaid-svg-QAFjJvNdJ5P4IVbV {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-QAFjJvNdJ5P4IVbV .error-icon{fill:#552222;}#mermaid-svg-QAF…...

EasyExcel写入和读取多个sheet

最近在工作中&#xff0c;作者频频接触到Excel处理&#xff0c;因此也对EasyExcel进行了一定的研究和学习&#xff0c;也曾困扰过如何处理多个sheet&#xff0c;因此此处分享给大家&#xff0c;希望能有所帮助 目录 1.依赖 2. Excel类 3.处理Excel读取和写入多个sheet 4. 执…...

LLM架构与优化:从理论到实践的关键技术

标题&#xff1a;“LLM架构与优化&#xff1a;从理论到实践的关键技术” 文章信息摘要&#xff1a; 文章探讨了大型语言模型&#xff08;LLM&#xff09;开发与应用中的关键技术&#xff0c;包括Transformer架构、注意力机制、采样技术、Tokenization等基础理论&#xff0c;以…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.22 形状操控者:转置与轴交换的奥秘

1.22 形状操控者&#xff1a;转置与轴交换的奥秘 目录 #mermaid-svg-Qb3eoIWrPbPGRVAf {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-Qb3eoIWrPbPGRVAf .error-icon{fill:#552222;}#mermaid-svg-Qb3eoIWrPbPGRVAf…...

NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram

结论 Transformer 大于 传统的Seq2Seq 大于 LSTM 大于 RNN 大于 传统的n-gram n-gram VS Transformer 我们可以用一个 图书馆查询 的类比来解释它们的差异&#xff1a; 一、核心差异对比 维度n-gram 模型Transformer工作方式固定窗口的"近视观察员"全局关联的&q…...

DeepSeek部署教程(基于Ollama)

虽说在过年&#xff0c;但不能忘了学习。这几天科技圈最火的莫过于deepseek&#xff0c;我抽空也学习一下deepseek的部署过程&#xff0c;主要还是因为官方服务已经彻底瘫了[手动狗头]。 1、下载Ollama并安装 https://github.com/ollama/ollama/releases/latest/download/Oll…...

Java基础面试题总结(题目来源JavaGuide)

问题1&#xff1a;Java 中有哪 8 种基本数据类型&#xff1f;它们的默认值和占用的空间大小知道不&#xff1f; 说说这 8 种基本数据类型对 应的包装类型。 在 Java 中&#xff0c;有 8 种基本数据类型&#xff08;Primitive Types&#xff09;&#xff1a; 基本数据类型关键…...

WPS mathtype间距太大、显示不全、公式一键改格式/大小

1、间距太大 用mathtype后行距变大的原因 mathtype行距变大到底怎么解决-MathType中文网 段落设置固定值 2、显示不全 设置格式&#xff1a; 打开MathType编辑器点击菜单栏中的"格式(Format)"选择"间距(Spacing)"在弹出的对话框中调整"分数间距(F…...

宇宙大爆炸是什么意思

根据宇宙大爆炸学说&#xff0c;宇宙间的一切都在彼此远离&#xff0c;而且距离越远&#xff0c;远离的速度越快。我们只能在地球上观察这种现象&#xff0c;而我们观察到的速度符合如下公式&#xff0c;其中 为哈勃常数&#xff0c; 为距离&#xff0c; 为速度&#xff08;…...

MotionLCM 部署笔记

目录 依赖项 humanml3d&#xff1a; sentence-t5-large 下载数据&#xff1a; 报错&#xff1a;No module named sentence_transformers 继续报错&#xff1a;from transformers.integrations import CodeCarbonCallback 解决方法&#xff1a; GitHub - Dai-Wenxun/Moti…...

VLLM性能调优

1. 抢占 显存不够的时候&#xff0c;某些request会被抢占。其KV cache被清除&#xff0c;腾退给其他request&#xff0c;下次调度到它&#xff0c;重新计算KV cache。 报这条消息&#xff0c;说明已被抢占&#xff1a; WARNING 05-09 00:49:33 scheduler.py:1057 Sequence gr…...

ESP32-S3模组上跑通esp32-camera(39)

接前一篇文章:ESP32-S3模组上跑通esp32-camera(38) 一、OV5640初始化 2. 相机初始化及图像传感器配置 上一回继续对reset函数的后一段代码进行解析。为了便于理解和回顾,再次贴出reset函数源码,在components\esp32-camera\sensors\ov5640.c中,如下: static int reset…...

Linux《基础指令》

在之前的Linux《Linux简介与环境的搭建》当中我们已经初步了解了Linux的由来和如何搭建Linux环境&#xff0c;那么接下来在本篇当中我们就要来学习Linux的基础指令。在此我们的学习是包括两个部分&#xff0c;即指令和关于Linux的基础知识&#xff1b;因此本篇指令和基础知识的…...

9.进程间通信

9.进程间通信 **1. 进程间通信&#xff08;IPC&#xff09;概述****2. 无名管道&#xff08;Pipe&#xff09;****3. 有名管道&#xff08;FIFO&#xff09;****4. 信号通信&#xff08;Signal&#xff09;****5. 练习与作业****6. 信号的应用****7. 总结** 1. 进程间通信&…...

Windows中本地组策略编辑器gpedit.msc打不开/微软远程桌面无法复制粘贴

目录 背景 解决gpedit.msc打不开 解决复制粘贴 剪贴板的问题 启用远程桌面剪贴板与驱动器 重启RDP剪贴板监视程序 以上都不行&#xff1f;可能是操作被Win11系统阻止 最后 背景 远程桌面无法复制粘贴&#xff0c;需要查看下主机策略组设置&#xff0c;结果按WinR输入…...

供应链系统设计-供应链中台系统设计(十二)- 清结算中心设计篇(一)

概述 在之前的文章中&#xff0c;我们通过之前的两篇文章中&#xff0c;如下所示&#xff1a; 供应链系统设计-供应链中台系统设计&#xff08;十&#xff09;- 清结算中心概念片篇 供应链系统设计-供应链中台系统设计&#xff08;十一&#xff09;- 清结算中心概念片篇 说…...

Vue.js 单页应用(SPA)开发教程:从零开始构建你的第一个项目

单页应用&#xff08;SPA&#xff0c;Single Page Application&#xff09;是现代前端开发的主流模式。Vue.js 是一个非常适合构建 SPA 的框架&#xff0c;它通过 Vue Router 实现页面导航&#xff0c;通过组件化开发和状态管理实现复杂的交互功能。本篇教程将带你了解 SPA 的基…...

Linux C openssl aes-128-cbc demo

openssl 各版本下载 https://openssl-library.org/source/old/index.html#include <stdio.h> #include <string.h> #include <openssl/aes.h> #include <openssl/rand.h> #include <openssl/evp.h>#define AES_KEY_BITS 128 #define GCM_IV_SIZ…...

你了解哪些Java限流算法?

大家好&#xff0c;我是锋哥。今天分享关于【你了解哪些Java限流算法?】面试题。希望对大家有帮助&#xff1b; 你了解哪些Java限流算法? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Java 中常用的限流算法主要有以下几种&#xff0c;它们广泛应用于处理流量控…...

【漫话机器学习系列】065.梯度(Gradient)

梯度&#xff08;Gradient&#xff09; 在数学和机器学习中&#xff0c;梯度是一个向量&#xff0c;用来表示函数在某一点的变化方向和变化率。它是多变量函数的一阶偏导数的组合。 梯度的定义 设有一个标量函数 &#xff0c;它对 ​ 是可微的&#xff0c;则该函数在某一点的…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

Linux安全加固:从攻防视角构建系统免疫

Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...

Python环境安装与虚拟环境配置详解

本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南&#xff0c;适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者&#xff0c;都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...